High Power Laser and Particle Beams, Volume. 34, Issue 8, 082203(2022)
Study on preheating ablative effects of two-mode Rayleigh-Taylor instability
[1] Taylor G I. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 201, 192-196(1950).
[2] [2] Strutt J W. ART. 100—Investigation of the acter of the equilibrium of an incompressible heavy fluid of variable density[M]Strutt J W. Scientific Papers. Cambridge: Cambridge University Press, 1900: 200207.
[3] Sharp D H. An overview of Rayleigh-Taylor instability[J]. Physica D: Nonlinear Phenomena, 12, 3-18(1984).
[4] Bodner S E. Rayleigh-Taylor instability and laser-pellet fusion[J]. Physical Review Letters, 33, 761-764(1974).
[5] Nuckolls J, Wood L, Thiessen A, et al. Laser compression of matter to super-high densities: thermonuclear (CTR) application[J]. Nature, 239, 139-142(1972).
[6] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 2, 3933-4024(1995).
[7] Takabe H, Mima K, Montierth L, et al. Self-consistent growth rate of the Rayleigh-Taylor instability in an ablatively accelerating plasma[J]. Physics of Fluids, 28, 3676(1985).
[8] Sanz J. Self-consistent analytical model of the Rayleigh-Taylor instability in inertial confinement fusion[J]. Physical Review E, 53, 4026-4045(1996).
[9] Roberts M S, Jacobs J W. The effects of forced small-wavelength, finite-bandwidth initial perturbations and miscibility on the turbulent Rayleigh-Taylor instability[J]. Journal of Fluid Mechanics, 787, 50-83(2016).
[10] Zhang H, Betti R, Gopalaswamy V, et al. Nonlinear excitation of the ablative Rayleigh-Taylor instability for all wave numbers[J]. Physical Review E, 97, 011203(2018).
[11] Zhao Kaige, Xue Chuang, Wang Lifeng, et al. Two-dimensional thin shell model for the nonlinear Rayleigh-Taylor instability in spherical geometry[J]. Physics of Plasmas, 26, 022710(2019).
[12] Qiao Xiumei, Lan Ke. Novel target designs to mitigate hydrodynamic instabilities growth in inertial confinement fusion[J]. Physical Review Letters, 126, 185001(2021).
[13] Bud’ko A B, Liberman M A. Stabilization of the Rayleigh-Taylor instability by convection in smooth density gradient: Wentzel-Kramers-Brillouin analysis[J]. Physics of Fluids B: Plasma Physics, 4, 3499-3506(1992).
[14] Betti R, Goncharov V N, McCrory R L, et al. Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion[J]. Physics of Plasmas, 5, 1446-1454(1998).
[15] Lewis D J. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 202, 81-96(1950).
[16] [16] Birkhoff G. Tayl instability laminar mixing[R]. Los Alamos: Las Alamos Scientific Lab. , 1954.
[17] [17] Birkhoff G, Bellman R, Lin C C. Hydrodynamic instability[M]. New Yk: Am. Math. Soc. , 1962: 5576.
[18] Zhang Weiyan, Ye Wenhua, Wu Junfeng, . Hydrodynamic instabilities of laser indirect-drive inertial-confinement-fusion implosion[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 44, 1-23(2014).
[19] Ye Wenhua, Zhang Weiyan, He Xiantu. Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number[J]. Physical Review E, 65, 057401(2002).
[20] Ye Wenhua, Zhang Weiyan, He Xiantu. Preheating stabilization formula of linear growth rate for ablative Rayleigh-Taylor instability[J]. Acta Physical Sinica, 49, 762-767(2000).
[21] Xia Hua, Shats M G. Spectral energy transfer and generation of turbulent structures in toroidal plasma[J]. Physics of Plasmas, 11, 561-571(2004).
[22] Wang Lifeng, Ye Wenhua, Li Yingjun. Interface width effect on the classical Rayleigh–Taylor instability in the weakly nonlinear regime[J]. Physics of Plasmas, 17, 052305(2010).
[23] Garnier J, Raviart P A, Cherfils-Clérouin C, et al. Weakly nonlinear theory for the ablative Rayleigh-Taylor instability[J]. Physical Review Letters, 90, 185003(2003).
[24] Verdon C P, McCrory R L, Morse R L, et al. Nonlinear effects of multifrequency hydrodynamic instabilities on ablatively accelerated thin shells[J]. Physics of Fluids, 25, 1653-1674(1982).
[25] Dahlburg J P, Gardner J H. Ablative Rayleigh-Taylor instability in three dimensions[J]. Physical Review A, 41, 5695-5698(1990).
[26] Xin Jingfei, Yan Rui, Wan Zhenhua, et al. Two mode coupling of the ablative Rayleigh-Taylor instabilities[J]. Physics of Plasmas, 26, 032703(2019).
[27] Hasegawa S, Nishihara K. Mode coupling theory in ablative Rayleigh-Taylor instability[J]. Physics of Plasmas, 2, 4606-4616(1995).
[28] Ye Wenhua, Wang Lifeng, He Xiantu. Spike deceleration and bubble acceleration in the ablative Rayleigh-Taylor instability[J]. Physics of Plasmas, 17, 122704(2010).
[29] Fan Zhengfeng, Luo Jisheng, Ye Wenhua. Compressible Rayleigh-Taylor instability with preheat in inertial confinement fusion[J]. Chinese Physics Letters, 24, 2308-2311(2007).
[30] Wang Lifeng, Ye Wenhua, He Xiantu. Density gradient effects in weakly nonlinear ablative Rayleigh-Taylor instability[J]. Physics of Plasmas, 19, 012706(2012).
[31] Wang Lifeng, Ye Wenhua, Chen Zhu, . Review of hydrodynamic instabilities in inertial confinement fusion implosions[J]. High Power Laser and Particle Beams, 33, 012001(2021).
Get Citation
Copy Citation Text
Yuanyuan Kuang, Yan Lu. Study on preheating ablative effects of two-mode Rayleigh-Taylor instability[J]. High Power Laser and Particle Beams, 2022, 34(8): 082203
Category: Inertial Confinement Fusion Physics and Technology
Received: Apr. 25, 2022
Accepted: --
Published Online: Aug. 8, 2022
The Author Email: Yan Lu (luyan2003@ahu.edu.cn)