Laser & Optoelectronics Progress, Volume. 59, Issue 16, 1610008(2022)

Lightweight YOLOv3 Algorithm for Small Object Detection

Guanrong Zhang1, Xiang Chen1, Yu Zhao1、*, Jianjun Wang2, and Guobiao Yi3
Author Affiliations
  • 1Aeronautics Engineering College, Air Force Engineering University, Xi’an 710038, Shaanxi , China
  • 2School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, Shaanxi , China
  • 3Unit 95696 of the Chinese People’s Liberation Army, 405200, Chongqing , China
  • show less
    Figures & Tables(19)
    Structure diagram of YOLOv3-CS
    Schematic diagram of channel pruning
    Structure diagrams of Residual block. (a) Input is output of downsample; (b) input is output of Residual
    Flow chart of pruning
    Sample images of RSOD dataset
    γ parameter distribution map of YOLOv3-CS on RSOD dataset
    Change curve of mAP and sparse rendering after constant γ sparse training.(a)λ= 0.001;(b)λ= 0.005;(c)λ= 0.007
    Change curve of mAP and sparse rendering after algorithm 1 sparse training
    Change curve of model mAP after channel pruning
    Change curve of model FPS after channel pruning
    Change curve of model Size after channel pruning
    Comparison of channel numbers before and after channel pruning. (a) Channel number comparison of backbone before and after channel pruning; (b) channel number comparison before and after channel pruning besides backbone
    Layer pruning result graph
    • Table 0. [in Chinese]

      View table

      Table 0. [in Chinese]

      Algorithm 1 Adaptive adjustment of sparsity factor:λ

       set:the group number of parameter γ is K,the sparsity factor is λ,the number of iterations is epochs

       Begin

         While epoch < epochs do

           While k < K do

             If 80% of a parameter in Group K is 0

                The sparsity factor of this group isλ k=λ×0.01

             End

           End

         End

       End

    • Table 1. Channel pruning results

      View table

      Table 1. Channel pruning results

      NameSize /MBNumber of parameters /MBGFLOPSmAP@0.5F1FPS
      YOLOv3-CS215.551.265.60.9030.89978
      YOLOv3-CS(sparse train)215.551.265.60.9060.87678
      YOLOv3-CS-CP(pruning rate)10.82.68140.8960.873147
      YOLOv3-CS-CP(fine-tuned after layer pruned)10.82.68140.9020.875147
    • Table 2. Layer pruning results

      View table

      Table 2. Layer pruning results

      NameSize /MBNumber of parameters /MBGFLOPSmAP@0.5F1FPS
      YOLOv3-CS-LP(layer pruned)115.728.9140.70.6490.575108
      YOLOv3-CS-LP(fine-tuned after layer pruned)115.728.9140.70.9020.855108
    • Table 3. Comparison of proposed pruning method, literature [25], and literature [24] pruning methods on YOLOv3-CS

      View table

      Table 3. Comparison of proposed pruning method, literature [25], and literature [24] pruning methods on YOLOv3-CS

      NameSize /MBNumber of parameters /MBGFLOPSmAP@0.5F1FPS
      YOLOv3-CS215.551.2365.60.9030.89978
      YOLOv3-CS(70% pruning rate)2512.72.978.70.8960.875111
      YOLOv3-CS(90% pruning rate)2428.36.678.20.8990.885122
      YOLOv3-CSP8.82.1811.60.9010.889213
    • Table 4. Comparison of proposed pruning method, literature [25], and literature [24] pruning methods on YOLOv3

      View table

      Table 4. Comparison of proposed pruning method, literature [25], and literature [24] pruning methods on YOLOv3

      NameSize /MBNumber of parameters /MBGFLOPSmAP@0.5F1FPS
      YOLOv3246.561.6365.70.8480.82585
      YOLOv3(70% pruning rate)2514.53.588.80.8340.789121
      YOLOv3(90% pruning rate)2431.28.018.30.8420.819141
      YOLOv3(our)10.12.6211.60.8460.824224
    • Table 5. Lightweight model comparison

      View table

      Table 5. Lightweight model comparison

      NameSize /MBNumber of parameters /MBGFLOPSmAP@0.5F1FPS
      MobileNet-YOLOv395.623.8214.50.8670.836116
      GhostNet-YOLOv394.223.5114.10.8610.828133
      SlimYOLOv3-SPP3-902432.48.029.970.8920.871133
      YOLOv3-tiny33.38.675.50.8430.858322
      YOLOv4-tiny24.46.0713.20.8690.861243
      YOLO-fastest1.40.290.80.6870.660313
      YOLO-fastest-xl3.60.842.30.7200.637204
      YOLOv3-CSP8.82.1811.60.9010.889213
    Tools

    Get Citation

    Copy Citation Text

    Guanrong Zhang, Xiang Chen, Yu Zhao, Jianjun Wang, Guobiao Yi. Lightweight YOLOv3 Algorithm for Small Object Detection[J]. Laser & Optoelectronics Progress, 2022, 59(16): 1610008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Mar. 29, 2021

    Accepted: Jul. 13, 2021

    Published Online: Jul. 22, 2022

    The Author Email: Yu Zhao (5325975@qq.com)

    DOI:10.3788/LOP202259.1610008

    Topics