Acta Optica Sinica, Volume. 35, Issue 10, 1030001(2015)
Dependence of Q-Branch Intensity of Pendular State Molecules on Electric Field and Molecular Orientation and Their Applications
[1] [1] Friedrich B, Herschbach D R. Spatial orientation of molecules in strong electric fields and evidence for pendular states[J]. Nature, 1991, 353(6343): 412-414.
[2] [2] Durand A, Loison J C, Vigue J. Spectroscopy of pendular states: Determination of the electric dipole moment of ICl in the X1Σ+ (v″=0) and A3Π1 (v′=6-29) levels[J]. J Chem Phys, 1997, 106(2): 477-484.
[3] [3] Kanya R, Ohshima Y. Determination of dipole moment change on the electronic excitation of isolated Coumarin 153 by pendular-state spectroscopy[J]. Chem Phys Lett, 2003, 370(1-2): 211-217.
[4] [4] Block P A, Bohac E J, Miller R E. Spectroscopy of pendular states: The use of molecular complexes in achieving orientation[J]. Phys Rev Lett, 1992, 68(9): 1303-1306.
[5] [5] Rost J M, Griffin J C, Friedrich B, et al.. Pendular states and spectra of oriented linear molecules[J]. Phy Rev Lett, 1992, 68(9): 1299-1302.
[6] [6] Friedrich B, Rubahn H G, Sathyamurthy N. State-resolved scattering of molecules in pendular states: ICl+Ar[J]. Phys Rev Lett, 1992, 69(17): 2487-2490.
[7] [7] Yang X, Kerstel E R T, Scoles G, et al.. High resolution infrared molecular beam spectroscopy of cyanoacetylene clusters[J]. J Chem Phys, 1995, 103(20): 8828-8839.
[8] [8] Rudic S, Merritty J M, Miller R E. Study of the CH3-H2O radical complex stabilized in helium nanodroplets[J]. Phys Chem Chem Phys, 2009, 11(26): 5345-5352.
[9] [9] Shvartsburg A A, Noskov S Y, Purves R W, et al.. Pendular proteins in gases and new avenues for characterization of macromolecules by ion mobility spectrometry[J]. PNAS, 2009, 106(16): 6495-6500.
[10] [10] Wei Q, Kais S, Friedrich B, et al.. Entanglement of polar symmetric top molecules as candidate qubits[J]. J Chem Phys, 2011, 135(15): 154102.
[11] [11] Loesch H J. Orientation and alignment in reactive beam collisions: Recent progress[J]. Annu Rev Phys Chem, 1995, 46(12): 555-594.
[12] [12] Werner U, Kabachnik N M, Kondratyev V N, et al.. Orientation effects in multiple ionization of molecules by fast ions[J]. Phy Rev Lett, 1997, 79(9): 1662-1665.
[13] [13] Taylor W S, Abrams M L, Matthews C, et al.. State-specific reactions of Cu+(1S, 3D) with CH3X and CF3X (X = Cl, Br, I): Exploring the influence of dipole orientation on association and C-X bond activation[J]. J Phys Chem A, 2012, 116(16): 3979-3988.
[14] [14] Rakitzis T P, Van Den Brom A J, Janssen M H M. Directional dynamics in the photodissociation of oriented molecules[J]. Science, 2004, 303(5665): 1852-1854.
[15] [15] Casavecchia P, Leonori F, Balucani N, et al.. Probing the dynamics of pdyatomic multichannel elementary reactions by crossed molecular beam experiments with soft electron-ionization mass spectrometer[J]. Phys Chem Chem Phys, 2009, 11: 46-65.
[16] [16] Beuhler Jr R J, Bernstein R B, Kramer K H. Observation of the reactive asymmetry of methyl iodide. Crossed beam study of the reaction of rubidium with oriented methyl iodide molecules[J]. J Am Chem Soc, 1966, 88(22): 5331-5332.
[17] [17] Brooks P R, Jones E M. Reactive scattering of K atoms from oriented CH3I molecules[J]. J Chem Phys, 1966, 45(9): 3499-3450.
[18] [18] Kaesdorf S, Schonhense G, Heinzmann U. Experimental angular-resolved hotoelectron spectroscopy of free oriented CH3I molecules[J]. Phys Rev Lett, 1985, 54(9): 885-888.
[19] [19] Mackay R S, Curtiss T J, Bernstein R B. Strong orientation dependence of the scattering of fluoroform by graphite (0001)[J]. J Chem Phys, 1990, 92(1): 801-802.
[20] [20] Friedrich B, Herschbach D R. On the possibility of orienting rotationally cooled polar molecules in an electric field[J]. Z Phys D: Atoms, Molecules and Clusters, 1991, 18(2): 153-161.
[21] [21] Loesch H J, Remscheid A. Brute force in molecular reaction dynamics: A novel technique for measuring steric effects[J]. J Chem Phys, 1990, 93(7): 4779-4790.
[22] [22] Friedrich B, Herschbach D R, Rost J M, et al.. Optical spectra of spatially oriented molecules: ICl in a strong electric field[J]. J Chem Soc Faraday Trans, 1993, 89(10): 1539-1549.
[23] [23] Friedrich B, Herschbach D. Enhanced orientation of polar molecules by combined electrostatic and nonresonant induced dipole forces [J]. J Chem Phys, 1999, 111(14): 6157-6160.
[24] [24] Hartelt M, Friedfich B. Directional states of symmetric-top molecules produced by combined static and radiative electric fields[J]. J Chem Phys, 2008, 128(22): 224313.
[25] [25] Sakai H, Minemoto S, Nanjo H, et al.. Controlling the orientation of polar molecules with combined electrostatic and pulsed, nonresonant laser fields[J]. Phys Rev Lett, 2003, 90(8): 083001.
[26] [26] Nielsen J H, Stapelfeldt H, Kupper J, et al.. Making the best of mixed-field orientation of polar molecules: A recipe for achieving adiabatic dynamics in an electrostatic field combined with laser pulses[J]. Phys Rev Lett, 2012, 108(19): 193001.
[27] [27] Gandhi S R, Curtiss T J, Bernstein R B. Asymmetry of the polarized-laser-induced photofragmentation of oriented CH3I molecules[J]. Phys Rev Lett, 1987, 59(26): 2951-2954.
[28] [28] Parker D H. Ultrasensitive Laser Techniques[M]. New York: Academic Press, 1983: 233-309.
[29] [29] Thoman J W, Chandler D W, Parker, D H, et al.. Two-dimensional imaging of photofragments[J]. Laser Chem, 1988, 9(1-3): 27-46.
[31] [31] He Ying, Zhang Yujun, Wang Liming, et al.. Laser technology for CO2 and H2O on-line detection in large-scale region[J]. Chinese J Lasers, 2014, 41(1): 0115003.
[32] [32] Long Jingming, Zhou Weidong, Wu Zhiwei, et al.. A high sensitive spectral detection system of gaseous measurement based on LabVIEW [J]. Chinese J Lasers, 2013, 40(1): 0115003.
[33] [33] Ma Jing. Low-concentration detection of chlorobenzene based on laser Raman spectroscopy[J]. Chinese J Lasers, 2014, 41(2): 0215001.
[34] [34] Chen Linghong, Zuo Lei, Wu Jian, et al.. Analysis of non-Fourier effect during laser-induced radiation of micro scale carbon particulates [J]. Chinese J Lasers, 2014, 41(4): 0408005.
[35] [35] Gordy W, Cook R L. Microwave Molecular Spectra[M]. New York: Hohn Wiley & Sons Press, 1984: 33-619.
[36] [36] Chang Y P, Filsinger F, Sartakov B G, et al.. CMIstark: Python package for the Stark-effect calculation and symmetry classification of linear, symmetric and asymmetric top wavefunctions in dc electric fields[J]. Comput Phys Commun, 2014, 185(1): 339-349.
[37] [37] Chen Yangqin, Yang Xiaohua. Laser Spectroscopy Technology[M]. Shanghai: East China Normal University Press, 2006: 8-9.
[38] [38] Friedrich B, Herschbach D. Alignment enhanced spectra of molecules in intense non-resonant laser fields[J]. Chem Phys Lett, 1996, 262(1-2): 41-46.
[39] [39] Deng Min. The Investigation of Pendular Spectra of Cold Molecules and Its Applications[D]. Shanghai: East China Normal University, 2013: 15-16.
[40] [40] Jucks K W, Miller R E. Sub-Doppler resolution infrared spectra of the isoelectronic pair: N2-HCN and OC-HCN[J]. J Chem Phys, 1988, 89(3): 1262-1267.
Get Citation
Copy Citation Text
Mao Fei, Deng Min, Wang Hailing, Yin Jianping. Dependence of Q-Branch Intensity of Pendular State Molecules on Electric Field and Molecular Orientation and Their Applications[J]. Acta Optica Sinica, 2015, 35(10): 1030001
Category: Spectroscopy
Received: May. 14, 2015
Accepted: --
Published Online: Oct. 8, 2015
The Author Email: Fei Mao (maofei@ecnu.cn)