Journal of Synthetic Crystals, Volume. 52, Issue 11, 2014(2023)

First-Principles Study on Hydrogen Storage Performance of Li- and Ca-Decorated VO2 Monolayer

HOU Yinyin* and MA Liangcai
Author Affiliations
  • [in Chinese]
  • show less
    References(28)

    [1] [1] LI J T. Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship[J]. Nano-Micro Letters, 2022, 14(1): 112.

    [2] [2] FAYE O, SZPUNAR J, EDUOK U. A critical review on the current technologies for the generation, storage, and transportation of hydrogen[J]. International Journal of Hydrogen Energy, 2022, 47(29): 13771-13802.

    [3] [3] SAKINTUNA B, LAMARI-DARKRIM F, HIRSCHER M. Metal hydride materials for solid hydrogen storage: a review[J]. International Journal of Hydrogen Energy, 2007, 32(9): 1121-1140.

    [6] [6] WANG L F, YANG R T. Hydrogen storage on carbon-based adsorbents and storage at ambient temperature by hydrogen spillover[J]. Catalysis Reviews, 2010, 52(4): 411-461.

    [7] [7] YOON M, YANG S Y, HICKE C, et al. Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage[J]. Physical Review Letters, 2008, 100(20): 206806.

    [8] [8] ZHENG N, YANG S L, XU H X, et al. A DFT study of the enhanced hydrogen storage performance of the Li-decorated graphene nanoribbons[J]. Vacuum, 2020, 171: 109011.

    [12] [12] PUTUNGAN D B, LIN S H, WEI C M, et al. Li adsorption, hydrogen storage and dissociation using monolayer MoS2: an ab initio random structure searching approach[J]. Physical Chemistry Chemical Physics, 2015, 17(17): 11367-11374.

    [13] [13] SONG N H, WANG Y S, GAO H Y, et al. Electric field improved hydrogen storage of Ca-decorated monolayer MoS2[J]. Physics Letters A, 2015, 379(9): 815-819.

    [14] [14] TANG Z K, LI X B, ZHANG D Y, et al. Two-dimensional square-pyramidal VO2 with tunable electronic properties[J]. Journal of Materials Chemistry C, 2015, 3(13): 3189-3197.

    [15] [15] LIN L, HU C C, XU S W, et al. First-principle investigation of CO adsorption on Pd-loaded VO2 monolayer[J]. Materials Today Communications, 2022, 32: 103681.

    [17] [17] WANG Y S, SONG N H, SONG X Y, et al. Metallic VO2 monolayer as an anode material for Li, Na, K, Mg or Ca ion storage: a first-principle study[J]. RSC Advances, 2018, 8(20): 10848-10854.

    [18] [18] KRESSE G, FURTHMLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186.

    [19] [19] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775.

    [20] [20] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.

    [21] [21] GRIMME S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction[J]. Journal of Computational Chemistry, 2006, 27(15): 1787-1799.

    [23] [23] MA L C, WANG L C, SUN Y R, et al. First-principles study of hydrogen storage on Ca-decorated defective boron nitride nanosheets[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 128: 114588.

    [24] [24] NIU J, RAO B K, JENA P. Binding of hydrogen molecules by a transition-metal ion[J]. Physical Review Letters, 1992, 68(15): 2277-2280.

    [25] [25] KUBAS G J. Metal-dihydrogen and σ-bond coordination: the consummate extension of the Dewar-Chatt-Duncanson model for metal-olefin π bonding[J]. Journal of Organometallic Chemistry, 2001, 635(1/2): 37-68.

    [26] [26] WANG Y S, JI Y, LI M, et al. Li and Ca co-decorated carbon nitride nanostructures as high-capacity hydrogen storage media[J]. Journal of Applied Physics, 2011, 110(9): 094311.

    [27] [27] WU Q, SHI M M, HUANG X, et al. A first-principles study of Li and Na co-decorated T4, 4, 4-graphyne for hydrogen storage[J]. International Journal of Hydrogen Energy, 2021, 46(11): 8104-8112.

    [28] [28] YUAN L H, WANG D B, GONG J J, et al. First-principles study of V-decorated porous graphene for hydrogen storage[J]. Chemical Physics Letters, 2019, 726: 57-61.

    [29] [29] CHEN X F, WANG L, ZHANG W T, et al. Ca-decorated borophene as potential candidates for hydrogen storage: a first-principle study[J]. International Journal of Hydrogen Energy, 2017, 42(31): 20036-20045.

    [30] [30] CHASE JR M W. NIST-JANAF thermochemical tables fourth edition[J]. Journal of Physical and Chemical Reference Data Monograph,1998.

    [32] [32] WANG Y, LI A, WANG K A, et al. Reversible hydrogen storage of multi-wall carbon nanotubes doped with atomically dispersed lithium[J]. Journal of Materials Chemistry, 2010, 20(31): 6490-6494.

    [33] [33] REYHANI A, MORTAZAVI S Z, MIRERSHADI S, et al. Hydrogen storage in decorated multiwalled carbon nanotubes by Ca, Co, Fe, Ni, and Pd nanoparticles under ambient conditions[J]. The Journal of Physical Chemistry C, 2011, 115(14): 6994-7001.

    [34] [34] MEHRABI M, PARVIN P, REYHANI A, et al. Hydrogen storage in multi-walled carbon nanotubes decorated with palladium nanoparticles using laser ablation/chemical reduction methods[J]. Materials Research Express, 2017, 4(9): 095030.

    [35] [35] GU J, ZHANG X P, FU L, et al. Study on the hydrogen storage properties of the dual active metals Ni and Al doped graphene composites[J]. International Journal of Hydrogen Energy, 2019, 44(12): 6036-6044.

    Tools

    Get Citation

    Copy Citation Text

    HOU Yinyin, MA Liangcai. First-Principles Study on Hydrogen Storage Performance of Li- and Ca-Decorated VO2 Monolayer[J]. Journal of Synthetic Crystals, 2023, 52(11): 2014

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 11, 2023

    Accepted: --

    Published Online: Dec. 5, 2023

    The Author Email: HOU Yinyin (houyinyin2021@163.com)

    DOI:

    CSTR:32186.14.

    Topics