International Journal of Extreme Manufacturing, Volume. 7, Issue 4, 45005(2025)
Rapid optimization of laser powder bed fusion process: a high-throughput integrated multi-task robust modeling approach
[1] [1] Zhang S L, Li X, Zuo J Y, Qin J, Cheng K L, Feng Y and Bao W. 2020. Research progress on active thermal protection for hypersonic vehicles.Prog. Aerosp. Sci.119, 100646.
[2] [2] Min Z, Huang G, Parbat S N, Yang L and Chyu M K. 2019. Experimental investigation on additively manufactured transpiration and film cooling structures.J. Turbomach.141, 031009.
[3] [3] Sun H O, Ma H F, Yan L Y, Fu H, Luan Y G and Zunino P. 2024. Numerical simulations on the performance of transpiration cooling implemented with perforated flat plates.Appl. Therm. Eng.238, 121943.
[4] [4] Gu D D, Shi X Y, Poprawe R, Bourell D L, Setchi R and Zhu J H. 2021. Material-structure-performance integrated laser-metal additive manufacturing.Science372, eabg1487.
[5] [5] Yao B, Kang N, Li X Y, Li D, El Mansori M, Chen J, Yang H O, Tan H and Lin X. 2024. Toward understanding the microstructure characteristics, phase selection and magnetic properties of laser additive manufactured Nd-Fe-B permanent magnets.Int. J. Extrem. Manuf.6, 015002.
[6] [6] Wei S S, Zhang J L, Zhang L, Zhang Y J, Song B, Wang X B, Fan J X, Liu Q and Shi Y S. 2023. Laser powder bed fusion additive manufacturing of NiTi shape memory alloys: a review.Int. J. Extrem. Manuf.5, 032001.
[7] [7] Wei H L, Mukherjee T, Zhang W, Zuback J S, Knapp G L, De A and DebRoy T. 2021. Mechanistic models for additive manufacturing of metallic components.Prog. Mater. Sci.116, 100703.
[8] [8] Dong Z, Han C J, Zhao Y Z, Huang J M, Ling C R, Hu G L, Wang Y H, Wang D, Song C H and Yang Y Q. 2024. Role of heterogenous microstructure and deformation behavior in achieving superior strength-ductility synergy in zinc fabricated via laser powder bed fusion.Int. J. Extrem. Manuf.6, 045003.
[9] [9] Su J L et al. 2024. Recent innovations in laser additive manufacturing of titanium alloys.Int. J. Extrem. Manuf.6, 032001.
[10] [10] DebRoy T, Wei H L, Zuback J S, Mukherjee T, Elmer J W, Milewski J O, Beese A M, Wilson-Heid A, De A and Zhang W. 2018. Additive manufacturing of metallic components—process, structure and properties.Prog. Mater. Sci.92, 112–224.
[11] [11] Teh W H, Chaudhary V, Chen S L, Lim S H, Wei F X, Lee J Y, Wang P, Padhy S P, Tan C C and Ramanujan R V. 2022. High throughput multi-property evaluation of additively manufactured Co-Fe-Ni materials libraries.Addit. Manuf.58, 102983.
[12] [12] Vecchio K S, Dippo O F, Kaufmann K R and Liu X. 2021. High-throughput rapid experimental alloy development (HT-READ).Acta Mater.221, 117352.
[13] [13] Islam Z, Agrawal A K, Rankouhi B, Magnin C, Anderson M H, Pfefferkorn F E and Thoma D J. 2022. A high-throughput method to define additive manufacturing process parameters: application to Haynes 282.Metall. Mater. Trans.A53, 250–263.
[14] [14] Moorehead M, Bertsch K, Niezgoda M, Parkin C, Elbakhshwan M, Sridharan K, Zhang C, Thoma D and Couet A. 2020. High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive manufacturing.Mater. Des.187, 108358.
[15] [15] Lu Q Y, Grasso M, Le T P and Seita M. 2022. Predicting build density in L-PBF throughin-situanalysis of surface topography using powder bed scanner technology.Addit. Manuf.51, 102626.
[16] [16] Ero O, Taherkhani K, Hemmati Y and Toyserkani E. 2024. An integrated fuzzy logic and machine learning platform for porosity detection using optical tomography imaging during laser powder bed fusion.Int. J. Extrem. Manuf.6, 065601.
[17] [17] Rankouhi B, Jahani S, Pfefferkorn F E and Thoma D J. 2021. Compositional grading of a 316L-Cu multi-material part using machine learning for the determination of selective laser melting process parameters.Addit. Manuf.38, 101836.
[18] [18] Chen Y, Peng X, Kong L B, Dong G X, Remani A and Leach R. 2021. Defect inspection technologies for additive manufacturing.Int. J. Extrem. Manuf.3, 022002.
[19] [19] Qin J, Hu F, Liu Y, Witherell P, Wang C C L, Rosen D W, Simpson T W, Lu Y and Tang Q. 2022. Research and application of machine learning for additive manufacturing.Addit. Manuf.52, 102691.
[20] [20] Mcgregor D J, Bimrose M V, Shao C H, Tawfick S and King W P. 2022. Using machine learning to predict dimensions and qualify diverse part designs across multiple additive machines and materials.Addit. Manuf.55, 102848.
[21] [21] Gui Y W, Aoyagi K, Bian H K and Chiba A. 2022. Detection, classification and prediction of internal defects from surface morphology data of metal parts fabricated by powder bed fusion type additive manufacturing using an electron beam.Addit. Manuf.54, 102736.
[22] [22] Suzuki A, Shiba Y, Ibe H, Takata N and Kobashi M. 2022. Machine-learning assisted optimization of process parameters for controlling the microstructure in a laser powder bed fused WC/Co cemented carbide.Addit. Manuf.59, 103089.
[23] [23] Moesen M, Craeghs T, Kruth J P and Schrooten J. 2011. Robust beam compensation for laser-based additive manufacturing.Comput. Aided Des.43, 876–888.
[24] [24] Zhang H M, Gu D D, Ma C L, Guo M, Yang J K and Wang R. 2019. Effect of post heat treatment on microstructure and mechanical properties of Ni-based composites by selective laser melting.Mater. Sci. Eng.A765, 138294.
[25] [25] Shi K Y, Gu D D, Liu H, Chen Y S and Lin K J. 2023. Process-structure multi-objective inverse optimisation for additive manufacturing of lattice structures using a physics-enhanced data-driven method.Virtual Phys. Prototyp.18, e2266641.
[26] [26] Seeger M. 2004. Gaussian processes for machine learning.Int. J. Neural Syst.14, 69–106.
[27] [27] Karimialavijeh H, Ghasri-Khouzani M, Das A, Prebstle M and Martin . 2023. Effect of laser contour scan parameters on fatigue performance of A20X fabricated by laser powder bed fusion.Int. J. Fat.175, 107775.
[28] [28] Ren Z H, Wei D H, Wang S Q, Zhang D Z and Mao S L. 2022. On the role of pre- and post-contour scanning in laser powder bed fusion: thermal-fluid dynamics and laser reflections.Int. J. Mech. Sci.226, 107389.
[29] [29] Mooraj S, Dong J Q, Xie K Y and Chen W. 2022. Formation of printing defects and their effects on mechanical properties of additively manufactured metal alloys.J. Appl. Phys.132, 225108.
[30] [30] MacKay D J C. 1996. Bayesian non-linear modeling for the prediction competition.In Maximum Entropy and Bayesian Methods(ed G R Heidbreder) (Springer) pp 221–234.
[31] [31] Jiang M, Mukherjee T, Du Y and DebRoy T. 2022. Superior printed parts using history and augmented machine learning.npj Comput.Mater.8, 184.
[32] [32] Frieden Templeton W, Hinnebusch S, Strayer S T, To A C, Pistorius P C and Narra S P. 2024. A mechanistic explanation of shrinkage porosity in laser powder bed fusion additive manufacturing.Acta Mater.266, 119632.
[33] [33] Shoukr D, Morcos P, Sundermann T, Dobrowolski T, Yates C, Jain J R, Arryave R, Karaman I and Elwany A. 2023. Influence of layer thickness on the printability of nickel alloy 718: a systematic process optimization framework.Addit. Manuf.73, 103646.
[34] [34] Zhang H, Gu D D and Dai D H. 2022. Laser printing path and its influence on molten pool configuration, microstructure and mechanical properties of laser powder bed fusion processed rare earth element modified Al-Mg alloy.Virtual Phys. Prototyp.17, 308–328.
[35] [35] Radek V, Jan J, Danile K, Jakub N, Tomas Z, Jozef K and David P. 2022. Contour laser strategy and its benefits for lattice structure manufacturing by selective laser melting technology.J. Manuf. Process.74, 640–657.
[36] [36] Bandyopadhyay A and Traxel K D. 2018. Invited review article: metal-additive manufacturing—Modeling strategies for application-optimized designs.Addit. Manuf.22, 758–774.
[37] [37] Taylor H C and Wicker R B. 2022. Impacts of microsecond control in laser powder bed fusion processing.Addit. Manuf.60, 103239.
Get Citation
Copy Citation Text
Zhang Han, Song Bingke, Shi Keyu, Chen Yusheng, Yang Biqi, Chang Miao, Hu Longhai, Xing Jinming, Gu Dongdong. Rapid optimization of laser powder bed fusion process: a high-throughput integrated multi-task robust modeling approach[J]. International Journal of Extreme Manufacturing, 2025, 7(4): 45005
Category:
Received: Sep. 20, 2024
Accepted: Sep. 9, 2025
Published Online: Sep. 9, 2025
The Author Email: