Photonic Sensors, Volume. 14, Issue 4, 240412(2024)
Review on Hollow-Core Fiber Based Multi-Gas Sensing Using Raman Spectroscopy
[1] [1] F. I. Khan and K. G. Aloke, “Removal of volatile organic compounds from polluted air,” Journal of Loss Prevention in the Process Industries, 2000, 13(6): 527–545.
[2] [2] S. C. Lee, M. Y. Chiu, K. F. Ho, S. C. Zou, and X. M. Wang, “Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong,” Chemosphere, 2002, 48(3): 375–382.
[3] [3] Y. Liu, M Shao, L. L. Fu, S. H. Lu, L. M. Zeng, and D. G. Tang, “Source profiles of volatile organic compounds (VOCs) measured in China: part I,” Atmospheric Environment, 2008, 42(25): 6247–6260.
[4] [4] F. M. Al-Douseri, Y. Chen, and X. C. Zhang, “THz wave sensing for petroleum industrial applications,” International Journal of Infrared and Millimeter Waves, 2006, 27: 481–503.
[5] [5] T. Salthammer, “Very volatile organic compounds: an understudied class of indoor air pollutants,” Indoor Air, 2016, 26(1): 25–38.
[6] [6] A. N. Al-Dabbous, A. R. Khan, S. A. Al-Tamimi, M. Shalash, A. D. Bajoga, and M. J. Malek, “Oxides of carbon, particulate matters and volatile organic compounds impact on indoor air quality during waterpipe smoking,” International Journal of Environmental Science and Technology, 2019, 16(6): 2849–2854.
[7] [7] M. Rizk, F. F. Guo, M. Verriele, M. Ward, S. Dusanter, N. Blond, et al., “Impact of material emissions and sorption of volatile organic compounds on indoor air quality in a low energy building: field measurements and modeling,” Indoor Air, 2018, 28(6): 924–935.
[8] [8] M. G. Schultz, H. Akimoto, J. Bottenheim, B. Buchmann, I. E. Galbally, S. Gilge, et al., “The global atmosphere watch reactive gases measurement network,” Elementa, 2015, 3: 000067.
[9] [9] D. R. Gentner, S. H. Jathar, T. D. Gordon, R. Bahreini, D. A. Day, I. El Haddad, et al., “Review of urban secondary organic aerosol formation from gasoline and diesel motor vehicle emissions,” Environmental Science & Technology, 2017, 51(3): 1074–1093.
[10] [10] H. Inaba, T. Kobayasi, M. Hirama, and M. Hamza, “Optical-fibre network system for air-pollution monitoring over a wide area by optical absorption method,” Electronics Letters, 1979, 15: 749–751.
[11] [11] M. Muhiyudin, T. Kobayasi, M. Hirama, E. Waddell, S. Song, and S. Ahmadzadeh, “Miniaturised infrared spectrophotometer for low power consumption multi-gas sensing,” Sensors, 2020, 20(14): 3843.
[12] [12] N. Liu, L. Xu, S. Zhou, L. Zhang, and J. Li, “Simultaneous detection of multiple atmospheric components using an NIR and MIR laser hybrid gas sensing system,” ACS Sensors, 2020, 5(11): 3607–3616.
[13] [13] M. Dong, C. Zheng, S. Miao, Y. Zhang, Q. Du, Y. Wang, et al., “Development and measurements of a mid-infrared multi-gas sensor system for CO, CO2 and CH4 detection,” Sensors, 2017, 17(10): 2221.
[14] [14] Y. Yang, J. Jiang, J. Zeng, Z. Chen, X. Zhu, and Y. Shi, “CH4, C2H6, and CO2 multi-gas sensing based on portable mid-infrared spectroscopy and PCA-BP algorithm,” Sensors, 2023, 23(3): 1413.
[15] [15] C. Wang and S. Peeyush, “Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits,” Sensors, 2023, 9(10): 8230–8262.
[16] [16] X. Yang, T. C. Bond, J. Z. Zhang, Y. Li, and C. Gu, “Photonics crystal fiber Raman sensors,” Information Optics and Optical Data Storage II, 2012, 8559: 855902.
[17] [17] M. P. Buric, J. Mullen, S. D. Woodruff, and B. Chorpening, “Design and industrial testing of ultra-fast multi-gas Raman spectrometer,” Next-Generation Spectroscopic Technologies VI, 2013, 8726: 115–124.
[18] [18] M. Li, Q. Liu, D. Yang, J. Guo, G. Si, L. Wu, et al., “Underwater in situ dissolved gas detection based on multi-reflection Raman spectroscopy,” Sensors, 2021, 21(14): 4831.
[19] [19] C. Wen, X. Huang, and C. Shen, “Multiple-pass-enhanced multiple-point gas Raman analyzer for industrial process control applications,” Journal of Raman Spectroscopy, 2020, 51(10): 2046–2052.
[20] [20] X. Han, Z. Huang, X. Chen, Q. F. Li, K. X. Xu, and D. Chen, “On-line multi-component analysis of gases for mud logging industry using data driven Raman spectroscopy,” Fuel, 2017, 207: 146–153.
[21] [21] D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Highly sensitive broadband Raman sensing of antibiotics in step-index hollow-core photonic crystal fibers,” ACS Photonics, 2017, 4(1): 138–145.
[22] [22] J. Guo, Z. Luo, Q. Liu, D. W. Yang, H. Dong, S. K. Huang, et al., “High-sensitivity Raman gas probe for in situ multi-component gas detection,” Sensors, 2021, 21(10): 3539.
[23] [23] A. Knebl, J. Popp, and T. Frosch, “Raman gas spectroscopy,” Handbook of Optoelectronics: Applied Optical Electronics (Volume Three), Boca Raton: CRC Press, 2017: 245.
[24] [24] R. Keiner, M. Herrmann, K. Küsel, J. Popp, and T. Frosch, “Rapid monitoring of intermediate states and mass balance of nitrogen during denitrification by means of cavity enhanced Raman multi-gas sensing,” Analytica Chimica Acta, 2015, 864: 39–47.
[25] [25] T. Jochum, B. Michalzik, A. Bachmann, J. Popp, and T. Frosch, “Microbial respiration and natural attenuation of benzene contaminated soils investigated by cavity enhanced Raman multi-gas spectroscopy,” Analyst, 2015, 140(9): 3143–3149.
[26] [26] D. Yan, J. Popp, and T. Frosch, “Analysis of fiber-enhanced Raman gas sensing based on Raman chemical imaging,” Analytical Chemistry, 2017, 89(22): 12269–12275.
[27] [27] R. Keiner, M. C. Gruselle, B. Michalzik, J. Popp, and T. Frosch, “Raman spectroscopic investigation of 13CO2 labeling and leaf dark respiration of Fagus sylvatica L. (European beech),” Analytical and Bioanalytical Chemistry, 2015, 407(7): 1813–1817.
[28] [28] Y. Qi, Y. Zhao, H. Bao, W. Jin, and H. L. Ho, “Nanofiber enhanced stimulated Raman spectroscopy for ultra-fast, ultra-sensitive hydrogen detection with ultra-wide dynamic range,” Optica, 2019, 6(5): 570–576.
[29] [29] A. Knebl, D. Yan, J. Popp, and T. Frosch, “Fiber enhanced Raman gas spectroscopy,” TrAC Trends in Analytical Chemistry, 2018, 103: 230–238.
[30] [30] S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-enhanced Raman multigas spectroscopy: a versatile tool for environmental gas sensing and breath analysis,” Analytical Chemistry, 2014, 86(11): 5278–5285.
[31] [31] S. Wolf, T. Frosch, J. Popp, M. W. Pletz, and T. Frosch, “Highly sensitive detection of the antibiotic ciprofloxacin by means of fiber enhanced Raman spectroscopy,” Molecules, 2019, 24(24): 4512.
[32] [32] V. Sandfort, B. M. Trabold, A. Abdolvand, C. Bolwien, P. S. J. Russell, J. W?llenstein, et al., “Monitoring the Wobbe index of natural gas using fiber-enhanced Raman spectroscopy,” Sensors, 2017, 17(12): 2714.
[33] [33] S. Hanf, T. B?g?zi, R. Keiner, T. Frosch, and J. Popp, “Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath,” Analytical Chemistry, 2015, 87(2): 982–988.
[34] [34] D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Fiber enhanced Raman sensing of levofloxacin by PCF bandgap-shifting into the visible range,” Analytical Methods, 2018, 10(6): 586–592.
[35] [35] D. Yan, C. Domes, R. Domes, T. Frosch, J. Popp, M. W. Pletz, et al., “Fiber enhanced Raman spectroscopic analysis as a novel method for diagnosis and monitoring of diseases related to hyperbilirubinemia and hyperbiliverdinemia,” Analyst, 2016, 141(21): 6104–6115.
[36] [36] A. Knebl, R. Domes, S. Wolf, C. Domes, J. Popp, T. Frosch, et al., “Fiber-enhanced Raman gas spectroscopy for the study of microbial methanogenesis,” Analytical Chemistry, 2020, 92(18): 12564–12571.
[37] [37] Y. Okita, T. Katagiri, and Y. Matsuura, “A Raman cell based on hollow optical fibers for breath analysis,” Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications X, 2010, 7559: 42–46.
[38] [38] Y. Okita, T. Katagiri, and Y. Matsuura, “Small-volume cavity cell using hollow optical fiber for Raman scattering-based gas detection,” Optical Fibers, Sensors, and Devices for Biomedical Diagnostics and Treatment XI, 2011, 7894: 138–143.
[39] [39] A. Kudelski, “Analytical applications of Raman spectroscopy,” Talanta, 2008, 76(1): 1–8.
[40] [40] T. Jochum, J. C. von Fischer, S. Trumbore, J. Popp, and T. Frosch, “Multigas leakage correction in static environmental chambers using sulfur hexafluoride and Raman spectroscopy,” Analytical Chemistry, 2015, 87(21): 11137–11142.
[41] [41] T. B?g?zi, J. Popp, and T. Frosch, “Fiber-enhanced Raman multi-gas spectroscopy: what is the potential of its application to breath analysis?” Bioanalysis, 2015, 7(3): 281–284.
[42] [42] A. Sieburg, T. Jochum, S. E. Trumbore, J. Popp, and T. Frosch, “Onsite cavity enhanced Raman spectrometry for the investigation of gas exchange processes in the earth’s critical zone,” Analyst, 2017, 142(18): 3360–3369.
[43] [43] J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, M. C. Weikl, and A. Leipertz, “Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant,” Measurement Science and Technology, 2008, 19(8): 085408.
[44] [44] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chemical Physics Letters, 1974, 26(2): 163–166.
[45] [45] A. Campion and P. Kambhampati, “Surface- enhanced Raman scattering,” Chemical Society Reviews, 1998, 27(4): 241–250.
[46] [46] S. K. Sharma, P. Kumar, S. Barthwal, S. Sharma, and A. Sharma, “Highly sensitive surface-enhanced Raman scattering (SERS)-based multi gas sensor: Au nanoparticles decorated on partially embedded 2D colloidal crystals into elastomer,” ChemistrySelect, 2017, 2(24): 6961–6969.
[47] [47] Z. C. Zeng, S. C. Huang, D. Y. Wu, L. Y. Meng, M. H. Li, T. X. Huang, et al., “Electrochemical tip-enhanced Raman spectroscopy,” Journal of the American Chemical Society, 2015, 137(37): 11928–11931.
[48] [48] R. M. St?ckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chemical Physics Letters, 2000, 318(1–3): 131–136.
[49] [49] M. D. Sonntag, J. M. Klingsporn, L. K. Garibay, J. M. Roberts, J. A. Dieringer, T. Seideman, et al., “Single-molecule tip-enhanced Raman spectroscopy,” The Journal of Physical Chemistry C, 2012, 116(1): 478–483.
[50] [50] M. Hercher, W. Mueller, S. Klainer, R. F. Adamowicz, R. E. Meyers, and S. E. Schwartz, “An efficient intracavity laser Raman spectrometer,”Applied Spectroscopy, 1978, 32(3): 298–302.
[51] [51] D. A. King and R. J. Pittaro, “Simple diode pumping of a power-buildup cavity,” Optics Letters, 1998, 23(10): 774–776.
[52] [52] D. J. Taylor, M. Glugla, and R. D. Penzhorn, “Enhanced Raman sensitivity using an actively stabilized external resonator,” Review of Scientific Instruments, 2001, 72(4): 1970–1976.
[53] [53] B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy,” Physical Review Letters, 2004, 92(9): 096101.
[54] [54] M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” Journal of Raman Spectroscopy, 2005, 36(6–7): 485–496.
[55] [55] H. Cai, X. Yu, Q. Chu, Z. Jin, B. Lin, and G. Wang, “Hollow-core fiber-based Raman probe extension kit for in situ and sensitive ultramicro-analysis,” Chinese Optics Letters, 2019, 17(11): 110601.
[56] [56] P. Russell, “Photonic crystal fibers,” Science, 2003, 299(5605): 358–362.
[57] [57] L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” Journal of Lightwave Technology, 2007, 25(11): 3563–3574.
[58] [58] T. Cheng, S. Li, and G. Zhou, “Relation between power fraction in the core of hollow-core photonic crystal fibers and their bandgap property,” Chinese Journal of Lasers, 2007, 34(2): 249.
[59] [59] W. Zhang, S. Lou, X. Wang, S. Yan, Z. Tang, and Z. Xing, “A broadband single mode single polarization metal wires-embedded hollow core anti-resonant fiber for polarization filter,” Optical Fiber Technology, 2019, 53: 102011.
[60] [60] M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber,” Applied Optics, 2008, 47(23): 4255–4261.
[61] [61] X. Yang, A. S. Chang, B. Chen, C. Gu, and T. C. Bond, “High sensitivity gas sensing by Raman spectroscopy in photonic crystal fiber,” Sensors and Actuators B: Chemical, 2013, 176: 64–68.
[62] [62] M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Improved sensitivity gas detection by spontaneous Raman scattering,” Applied Optics, 2009, 48(22): 4424–4429.
[63] [63] A. Sieburg, A. Knebl, J. M. Jacob, and T. Frosch, “Characterization of fuel gases with fiber-enhanced Raman spectroscopy,” Analytical and Bioanalytical Chemistry, 2019, 411: 7399–7408.
[64] [64] F. Wan, W. Kong, Q. Liu, P. Wang, M. Wang, and Q. Li, “Fluorescence noise eliminating fiber-enhanced Raman spectroscopy for simultaneous and multiprocess analysis of intermediate compositions for C2H2 and H2 production,” Analytical Chemistry,2023, 95(22): 8596–8604.
[65] [65] A. Knebl, C. Domes, R. Domes, S. Wolf, J. Popp, and T. Frosch, “Hydrogen and C2-C6 alkane sensing in complex fuel gas mixtures with fiber-enhanced Raman spectroscopy,” Analytical Chemistry, 2021, 93(30): 10546–10552.
[66] [66] J. Wang, W. Chen, P. Wang, Z. Zhang, F. Wan, F. Zhou, et al., “Fiber-enhanced Raman spectroscopy for highly sensitive H2 and SO2 sensing with a hollow-core anti-resonant fiber,” Optics Express, 2021, 29(20): 32296–32311.
[67] [67] M. Yang, Y. Ye, Y. Zhou, Z. Liu, L. Xiong, and D. Guo, “Rapid response of Raman gas sensing based on node-less anti-resonant fiber,” Advanced Sensor Systems and Applications XII, 2022, 12321: 63–67.
[68] [68] Q. Nie, Z. Liu, M. Chen, D. Yang, M. Yang, and D. Guo, “Gas Raman sensors based on anti-resonant hollow core fibers using metal coated capillaries and their applications in leakage detection of electrolytes in lithium-ion batteries,” Optical Fiber Sensors, 2023, Th6.6.
[69] [69] A. Knebl, R. Domes, D. Yan, J. Popp, S. Trumbore, and T. Frosch, “Fiber-enhanced Raman gas spectroscopy for 18O-13C-labeling experiments,” Analytical Chemistry, 2019, 91(12): 7562–7569.
[70] [70] Y. Bai, D. Xiong, Z. Yao, X. Wang, and D. Zuo, “Analysis of CH4, C2H6, C2H4, C2H2, H2, CO, and H2S by forward Raman scattering with a hollow-core anti-resonant fiber,” Journal of Raman Spectroscopy, 2022, 53(5): 1023–1031.
[71] [71] S. A. Akhmanov and N. I. Koroteev, “Methods of nonlinear optics in light scattering spectroscopy,” 1981: 991.
[72] [72] G. L. Eesley, “Coherent Raman spectroscopy,” Pergamon: Oxford, 2013.
[73] [73] S. Roy, T. R. Meyer, R. P. Lucht, V. M. Belovich, E. Corporan, and J. R. Gord, “Temperature and CO2 concentration measurements in the exhaust stream of a liquid-fueled combustor using dual-pump coherent anti-Stokes Raman scattering (CARS) spectroscopy,” Combustion and Flame, 2004, 138(3): 273–284.
[74] [74] F. Vestin and P. E. Bengtsson, “Rotational CARS for simultaneous measurements of temperature and concentrations of N2, O2, CO, and CO2 demonstrated in a CO/air diffusion flame,” Proceedings of the Combustion Institute, 2009, 32(1): 847–854.
[75] [75] S. Zaitsu and T. Imasaka, “Intracavity phase- matched coherent anti-Stokes Raman spectroscopy for trace gas detection,” Analytical Sciences, 2014, 30(1): 75–79.
[76] [76] S. M. Green, P. J. Rubas, M. A. Paul, J. E. Peters, and R. P. Lucht, “Annular phase-matched dual-pump coherent anti-Stokes Raman spectroscopy system for the simultaneous detection of nitrogen and methane,” Applied Optics, 1998, 37(9): 1690–1701.
[77] [77] M. Schenk, T. Seeger, and A. Leipertz,“Simultaneous temperature and relative O2-N2 concentration measurements by single-shot pure rotational coherent anti-Stokes Raman scattering for pressures as great as 5 MPa,” Applied Optics, 2000, 39(36): 6918–6925.
[78] [78] P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Physical Review, 1965, 137(3A): A801.
[79] [79] R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti-Stokes Raman spectroscopy,” Applied Physics Letters, 1974, 25(7): 387–390.
[80] [80] R. B. Miles, G. Laufer, and G. C. Bjorklund, “Coherent anti-Stokes Raman scattering in a hollow dielectric waveguide,” Applied Physics Letters, 1977, 30(8): 417–419.
[81] [81] A. B. Fedotov, S. O. Konorov, V. P. Mitrokhin, E. E. Serebryannikov, and A. M. Zheltikov, “Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber,” Physical Review A, 2004, 70(4): 045802.
[82] [82] B. M. Trabold, R. J. Hupfer, A. Abdolvand, M. H. Frosz, and P. S. J. Russell, “Broadband high-resolution multi-species CARS in gas-filled hollow-core photonic crystal fiber,” Optics Letters, 2017, 42(17): 3283–3286.
[83] [83] R. Tyumenev, L. Sp?th, B. M. Trabold, G. Ahmed, M. H. Frosz, and P. S. J. Russell, “Pump-probe multi-species CARS in a hollow-core PCF with a 20 ppm detection limit under ambient conditions,” Optics Letters, 2019, 44(10): 2486–2489.
[84] [84] R. J. Hupfer, B. M. Trabold, A. Abdolvand, et al., “Multi-species coherent anti-Stokes Raman spectroscopy in gas-filled hollow-core photonic crystal fiber,” in Frontiers in Optics 2016, OSA Technical Digest, New York, USA, 2016, pp.135.
[85] [85] R. Tyumenev, B. M. Trabold, L. Sp?th, M. H. Frosz, and P. S. J. Russell, “Broadband multi-species CARS in gas-filled hollow-core photonic crystal fiber,” in CLEO: Science and Innovations, San Jose, USA,2018, pp. 1?2.
[86] [86] R. Tyumenev, L. Sp?th, B. M. Trabold, G. Ahmed, M. H. Frosz, and P. S. J. Russell, “Dual-colour-pump broadband CARS in single-ring gas-filled photonic crystal fibre,” in the European Conference on Lasers and Electro-Optics, Munich, Germany, 2019, pp. jsii_ 1_3.
[87] [87] D. Xiong, Y. Bai, D. Zuo, and X. Wang, “High-resolution continuous-wave coherent anti-Stokes Raman spectroscopy in a CO2-filled hollow-core photonic crystal fiber,” Journal of Raman Spectroscopy, 2021, 52(4): 857–864.
Get Citation
Copy Citation Text
QiluNIE, Zhixiong LIU, Mengen CHENG, Shilong PEI, Dexun YANG, Donglai GUO, and Minghong YANG. Review on Hollow-Core Fiber Based Multi-Gas Sensing Using Raman Spectroscopy[J]. Photonic Sensors, 2024, 14(4): 240412
Received: Oct. 23, 2023
Accepted: Jan. 31, 2024
Published Online: Oct. 15, 2024
The Author Email: GUO Donglai (dlguo@whut.edu.cn)