Laser & Optoelectronics Progress, Volume. 59, Issue 19, 1914007(2022)
Prediction of Weld Forming Size for Laser Welded Titanium Alloy T-joint Based on Regression Analysis
[1] Liu Q M, Zhang Z H, Liu S F et al. Application and development of titanium alloy in aerospace and military hardware[J]. Journal of Iron and Steel Research, 27, 1-4(2015).
[2] Shan Q B, Liu C, Yao J et al. Effects of scanning strategy on the microstructure, properties, and residual stress of TC4 titanium alloy prepared by laser melting deposition[J]. Laser & Optoelectronics Progress, 58, 1114002(2021).
[3] Wang W, Shen J, Liu W J et al. Effect of scanning speed of galvanometer on surface oxide layer of TA15 titanium alloy in pulsed laser cleaning[J]. Chinese Journal of Lasers, 48, 1802004(2021).
[4] Mei S W, Cheng Q L, Hu P P et al. Study on fiber laser welding of skinned skeletal structure titanium alloy[J]. Hot Working Technology, 44, 83-86(2015).
[5] Liu H, Chen H. Effect of laser power on microstructure and properties of dissimilar steel’s laser welded joint[J]. Laser & Optoelectronics Progress, 58, 2314007(2021).
[6] Chai X T, Yin Y, Wang Z P et al. Joint microstructure and properties of D36 steel using narrow gap laser welding[J]. Laser & Optoelectronics Progress, 58, 1714008(2021).
[7] Zhao L, Han X, Zou J L et al. Research on formation process of keyhole during fiber laser deep penetration welding[J]. Laser & Optoelectronics Progress, 57, 071402(2020).
[9] Gao S Y, Wu R M, Chen W D et al. Development status of laser welding process monitor and seam quality detection[J]. World Iron & Steel, 10, 51-54, 63(2010).
[11] Hou W H. Research on defect recognition of weld image based on deep learning[D](2019).
[12] Wu S P. Online monitoring of laser welding penetration status and its pattern classification[D](2006).
[13] Qin G L, Lin S Y. Weld penetration monitoring in Nd: YAG laser deep penetration welding based on coaxial visual sensing technology[J]. Chinese Journal of Mechanical Engineering, 42, 229-233(2006).
[15] Brueggemann G, Benziger T. Process-control in laser beam welding using acoustic emission analysis[J]. Schweissen & Schneiden, 5, E73-E76(1997).
[16] Wang C M, Yu F L, Duan A Q et al. Relationship between penetration depth and plasma optic signal during partial-penetration laser welding[J]. Transactions of the China Welding Institution, 23, 45-48, 56(2002).
[17] Qi X B. State-of-arts of visual sensing technology to monitor laser welding process[J]. Transactions of the China Welding Institution, 29, 108-112, 118(2008).
[18] Chen W Z, Jia L, Zhang X D et al. Coaxial vision sensing system and detection of penetration status in CO2 laser welding[J]. Applied Laser, 24, 130-134(2004).
Get Citation
Copy Citation Text
Xue Wen, Honghui Wang, Dehua Fan, Zhenglong Lei, Siyuan Bi, Hengtong Guo. Prediction of Weld Forming Size for Laser Welded Titanium Alloy T-joint Based on Regression Analysis[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1914007
Category: Lasers and Laser Optics
Received: Jan. 7, 2022
Accepted: Feb. 16, 2022
Published Online: Sep. 19, 2022
The Author Email: Lei Zhenglong (leizhenglong@hit.edu.cn)