Chinese Journal of Lasers, Volume. 50, Issue 23, 2301001(2023)
Analysis of High-Speed Modulation Performance of Photonic Crystal Surface-Emitting Blue Lasers
[1] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 58, 2059-2062(1987).
[2] Ryu H Y, Kwon S H, Lee Y J et al. Very low threshold photonic band edge lasers from free-standing triangular photonic crystal slabs[J]. Applied physics letters, 80, 3476-3478(2002).
[3] Painter O, Lee R K, Scherer A et al. Two-dimensional photonic band-gap defect mode laser[J]. Science, 284, 1819-1821(1999).
[4] Chang Y C, Coldren L A. Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 704-715(2009).
[5] Panajotov K, Prati F. VCSELs: fundamentals, technology and applications of vertical-cavity surface-emitting lasers[M]. Michalzik R. Springer series in optical sciences(2012).
[6] Xiang G H, Jia S Q, Li D P et al. Design and simulation of a colloidal quantum dot vertical-cavity surface-emitting laser[J]. Chinese Journal of Lasers, 48, 1901005(2021).
[7] Pan Z P, Li W, Qi Y X et al. Design and analysis of photonic crystal vertical-cavity surface-emitting lasers[J]. Acta Optica Sinica, 42, 1414002(2022).
[8] Imada M, Noda S, Chutinan A et al. Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure[J]. Applied Physics Letters, 75, 316-318(1999).
[9] Hsu M Y, Lin G, Pan C H. Electrically injected 1.3-μm quantum-dot photonic-crystal surface-emitting lasers[J]. Optics Express, 25, 32697-32704(2017).
[10] Yoshida M, De Zoysa M, Ishizaki K et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams[J]. Nature Materials, 18, 121-128(2019).
[11] Sakata R, Ishizaki K, De Zoysa M et al. Dually modulated photonic crystals enabling high-power high-beam-quality two-dimensional beam scanning lasers[J]. Nature Communications, 11, 1-10(2020).
[12] Chen L R, Hong K B, Chen H L et al. Vertically integrated diffractive gratings on photonic crystal surface emitting lasers[J]. Scientific Reports, 11, 1-7(2021).
[13] Hong Y H, Miao W C, Hsu W C et al. Progress of photonic-crystal surface-emitting lasers: a paradigm shift in LiDAR application[J]. Crystals, 12, 800(2022).
[14] Ishizaki K, de Zoysa M, Noda S. Progress in photonic-crystal surface-emitting lasers[J]. Photonics, 6, 96(2019).
[15] Belyanin A A, Smowton P M. Novel in-plane semiconductor lasers XIX[J]. Proceedings of SPIE, 11301, 1130101(2020).
[16] Reuterskiöld Hedlund C, Martins De Pina J, Kalapala A et al. Buried InP/airhole photonic-crystal surface-emitting lasers[J]. Physica Status Solidi (a), 218, 2000416(2021).
[17] Inoue T, Yoshida M, Zoysa M D et al. Design of photonic-crystal surface-emitting lasers with enhanced in-plane optical feedback for high-speed operation[J]. Optics Express, 28, 5050-5057(2020).
[18] Peng C Y, Cheng H T, Hong Y H et al. Performance analyses of photonic-crystal surface-emitting laser: toward high-speed optical communication[J]. Nanoscale Research Letters, 17, 90(2022).
[19] Sun Y, Zhou K, Sun Q et al. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si[J]. Nature Photonics, 10, 595-599(2016).
[20] Kuramoto M, Kobayashi S, Akagi T et al. Enhancement of slope efficiency and output power in GaN-based vertical-cavity surface-emitting lasers with a SiO2-buried lateral index guide[J]. Applied Physics Letters, 112, 111104(2018).
[21] Wang J, Feng M X, Zhou R et al. Continuous-wave electrically injected GaN-on-Si microdisk laser diodes[J]. Optics Express, 28, 12201-12208(2020).
[22] Liang F, Zhao D G, Jiang D S et al. Influence of light field distribution on Gan-based green laser[J]. Chinese Journal of Lasers, 47, 0701018(2020).
[23] Elafandy R T, Kang J H, Mi C et al. Study and application of birefringent nanoporous GaN in the polarization control of blue vertical-cavity surface-emitting lasers[J]. ACS Photonics, 8, 1041-1047(2021).
[24] Hong K B, Chang T C, Hjort F et al. Monolithic high-index contrast grating mirror for a GaN-based vertical-cavity surface-emitting laser[J]. Photonics Research, 9, 2214-2221(2021).
[25] Yang J, Zhao D G, Liu Z S et al. Room temperature continuous-wave operated 2.0-W GaN-based ultraviolet laser diodes[J]. Optics Letters, 47, 1666-1668(2022).
[26] Emoto K, Koizumi T, Hirose M et al. Wide-bandgap GaN-based watt-class photonic-crystal lasers[J]. Communications Materials, 3, 1-8(2022).
[27] Matsuo S, Kakitsuka T. Low-operating-energy directly modulated lasers for short-distance optical interconnects[J]. Advances in Optics and Photonics, 10, 567-643(2018).
[28] Coldren L A, Corzine S W, Mašanović M L[M]. Diode lasers and photonic integrated circuits(2012).
[29] Alahyarizadeh G, Aghajani H, Mahmodi H et al. Analytical and visual modeling of InGaN/GaN single quantum well laser based on rate equations[J]. Optics & Laser Technology, 44, 12-20(2012).
[30] Matsuo S, Shinya A, Kakitsuka T et al. High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted[J]. Nature Photonics, 4, 648-654(2010).
[31] Gadiyaram N K, Coleman J, Zhou W D. Towards attojoule operation of semiconductor quantum well lasers[C](2020).
[32] Takeda K, Fujii T, Shinya A et al. 1-fJ/bit direct modulation of photonic-crystal lasers[C](2018).
[33] Descos A, Jany C, Bordel D et al. Heterogeneously integrated Ⅲ-V/Si distributed Bragg reflector laser with adiabatic coupling[C](2013).
Get Citation
Copy Citation Text
Yang Zhou, Shumin He, Wei Shen, Qifa Liu. Analysis of High-Speed Modulation Performance of Photonic Crystal Surface-Emitting Blue Lasers[J]. Chinese Journal of Lasers, 2023, 50(23): 2301001
Category: laser devices and laser physics
Received: Feb. 7, 2023
Accepted: Apr. 11, 2023
Published Online: Dec. 7, 2023
The Author Email: Liu Qifa (liuqf@njupt.edu.cn)