Infrared and Laser Engineering, Volume. 51, Issue 10, 20220700(2022)

Research progress and development tendency of sapphire fiber Bragg grating-based high-temperature sensors (invited)

Jun He1,2, Xizhen Xu1,2, Jia He1,2, Jiafeng Wu1,2, Zhuoda Li1,2, and Yiping Wang1,2、*
Author Affiliations
  • 1Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • 2Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
  • show less
    References(75)

    [3] R Borrelli, A Riccio, D Tescione, et al. Thermo-structural behaviour of an UHTC made nose cap of a reentry vehicle. Acta Astronautica, 65, 442-456(2009).

    [6] Jianquan Liu, Jiguo Zhang, Jingda Shi, et al. Analysis on the reactivity of reactor noncontrolled lifting rod based on RELAP5. Journal of Shanghai University of Electric Power, 34, 343-346, 355(2018).

    [7] C R Liao, D N Wang. Review of femtosecond laser fabricated fiber Bragg gratings for high temperature sensing. Photonic Sensors, 3, 97-101(2013).

    [8] [8] Ye L H, Shen Z P, Tong L M, et al. Optical properties of sapphire fiber under high temperature [C]Advanced Materials Devices f Sensing Imaging, Proceedings of SPIE, 2002, 4919(1): 161Y.

    [9] R R Dils. High-temperature optical fiber thermometer. Journal of Applied Physics, 54, 1198-1201(1983).

    [10] Y H Shen, L M Tong, Y Q Wang, et al. Sapphire-fiber thermometer ranging from 20 to 1 800 ℃. Applied Optics, 38, 1139-1143(1999).

    [12] A Wang, S Gollapudi, K A Murphy, et al. Sapphire-fiber-based intrinsic Fabry-Perot interferometer. Optics Letters, 17, 1021-1023(1992).

    [13] A Wang, S Gollapudi, R G May, et al. Advances in sapphire-fiber-based intrinsic interferometric sensors. Optics Letters, 17, 1544-1546(1992).

    [14] J J Wang, B Dong, E Lally, et al. Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers. Optics Letters, 35, 619-621(2010).

    [15] W W Li, T Liang, Y L Chen, et al. Interface characteristics of sapphire direct bonding for high-temperature applications. Sensors, 17, 2080(2017).

    [16] B Liu, Z H Yu, Z P Tian, et al. Temperature dependence of sapphire fiber Raman scattering. Optics Letters, 40, 2041-2044(2015).

    [17] B Liu, Z H Yu, C Hill, et al. Sapphire-fiber-based distributed high-temperature sensing system. Optics Letters, 41, 4405-4408(2016).

    [18] B Liu, M P Buric, B T Chorpening, et al. Design and implementation of distributed ultra-high temperature sensing system with a single crystal fiber. Journal of Lightwave Technology, 36, 5511-5520(2018).

    [19] D Grobnic, S J Mihailov, C W Smelser, et al. Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications. Photonics Technology Letters IEEE, 16, 2505-2507(2004).

    [20] [20] Mihailov S J, Grobnic D, Walker R B, et al. Femtosecond laser inscribed high temperature fiber Bragg grating senss [C]Proceedings of SPIE, 2007, 6770: 677009.

    [21] T Elsmann, T Habisreuther, A Graf, et al. Inscription of first-order sapphire Bragg gratings using 400 nm femtosecond laser radiation. Optics Express, 21, 4591-4597(2013).

    [22] S Yang, D Hu, A B Wang. Point-by-point fabrication and characterization of sapphire fiber Bragg gratings. Optics Letters, 42, 4219-4222(2017).

    [23] X Z Xu, J He, C R Liao, et al. Sapphire fiber Bragg gratings inscribed with a femtosecond laser line-by-line scanning technique. Optics Letters, 43, 4562-4565(2018).

    [24] V Phomsakha, R Chang, N Djeu. Novel implementation of laser heated pedestal growth for the rapid drawing of sapphire fibers. Review of scientific Instruments, 65, 3860-3861(1994).

    [26] [26] WAFER DICING. Sapphire optical properties sapphire optical transmission [EBOL]. [20220929]. https:valleydesign.comsapppic.html.

    [27] L M Tong, Y H Shen, F M Chen, et al. Plastic bending of sapphire fibers for infrared sensing and power-delivery applications. Applied Optics, 39, 494-501(2000).

    [28] [28] Micromaterials. LHPG Sapphire Fibers[DBOL]. (20190910) [20220929]. http:www.micromaterialsinc.comspecsFiber.html.

    [30] [30] Mihailov S J. Ultrafast laser inscribed fiber Bragg gratings f sensing applications [C]SPIE Commercial + Scientific Sensing & Imaging, 2016, 9852: 98520P.

    [31] I H Malitson, F V Murphy, W S Rodney. Refractive index of synthetic sapphire. Journal of the Optical Society of America, 48, 72-73(1958).

    [32] [32] Xu Xizhen. Research on the fabrication techniques hightemperature sensing acteristics of sapphire fiber Bragg gratings[D]. Shenzhen: Shenzhen University, 2019. (in Chinese)

    [34] T Mizunami, T V Djambova, T Niiho, et al. Bragg gratings in multimode and few-mode optical fibers. Journal of Lightwave Technology, 18, 230-235(2000).

    [36] W S Mohammed, A Mehta, E G Johnson. Wavelength tunable fiber lens based on multimode interference. Journal of Lightwave Technology, 22, 469-477(2004).

    [37] H G Yu, Y Wang, Q Y Xu, et al. Characteristics of multimode fiber Bragg gratings and their influences on external-cavity semiconductor lasers. Journal of Lightwave Technology, 24, 1903-1912(2006).

    [38] X X Feng, Y Jiang, S R Xie, et al. Higher-order mode suppression technique for multimode sapphire fiber external Fabry-Perot interferometers. Optics Express, 30, 4759-4767(2022).

    [39] M J Schmid, Müller, S Mathias. Measuring Bragg gratings in multimode optical fibers. Optics Express, 23, 8087-8094(2015).

    [40] C Chen, X Y Zhang, Y S Yu, et al. Femtosecond laser-inscribed high-order Bragg gratings in large-diameter sapphire fibers for high-temperature and strain sensing. Journal of Lightwave Technology, 36, 3302-3308(2018).

    [41] M Busch, W Ecke, I Latka, et al. Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications. Measurement Science & Technology, 20, 115301(2009).

    [42] Q Guo, Z D Zhang, Z M Zheng, et al. Parallel-integrated sapphire fiber Bragg gratings probe sensor for high temperature sensing. IEEE Sensors Journal, 22, 5703-5708(2022).

    [43] Q Guo, Y S Yu, Z M Zheng, et al. Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing. IEEE Transactions on Nanotechnology, 18, 208-211(2019).

    [44] X Z Xu, J He, C R Liao, et al. Multi-layer, offset-coupled sapphire fiber Bragg gratings for high-temperature measure-ments. Optics Letters, 44, 4211-4214(2019).

    [45] X Z Xu, J He, J He, et al. Efficient point-by-point Bragg grating inscription in sapphire fiber using femtosecond laser filaments. Optics Letters, 46, 2742-2745(2021).

    [46] J He, J He, X Z Xu, et al. Single-mode helical Bragg grating waveguide created in a multimode coreless fiber by femtosecond laser direct writing. Photonics Research, 9, 2052-2059(2021).

    [47] Q Guo, S R Liu, X P Pan, et al. Femtosecond laser inscribed helical sapphire fiber Bragg gratings. Optics Letters, 46, 4836-4839(2021).

    [48] [48] Grobnic D, Mihailov S J, Ding H, et al. Single low der mode interrogation of a multimode sapphire fiber Bragg grating sens with tapered fibers [C]Bruges, Belgiumdeadline Past, International Society f Optics Photonics, 2005.

    [49] [49] Ding H M, Grobnic D, Hnatovsky C, et al. Sapphire fiber Bragg grating coupled with gradedindexfiber lens [C]2019 Photonics Nth (PN), 2019.

    [50] C Zhan, J H Kim, S Yin, et al. High temperature sensing using higher-order-mode rejected sapphire fiber gratings. Optical Memory & Neural Networks, 16, 204-210(2007).

    [51] Y J Cheng, C Hill, B Liu, et al. Modal reduction in single crystal sapphire optical fiber. Optical Engineering, 54, 107103(2015).

    [52] Y J Cheng, C Hill, B Liu, et al. Design and analysis of large-core single-mode windmill single crystal sapphire optical fiber. Optical Engineering, 55, 066101(2016).

    [53] C Hill, D Homa, Z H Yu, et al. Single mode air-clad single crystal sapphire optical fiber. Applied Sciences, 7, 473(2017).

    [54] S Yang, D Homa, G Pickrell, et al. Fiber Bragg grating fabricated in micro-single-crystal sapphire fiber. Optics Letters, 43, 62-65(2018).

    [55] P Dragic, T Hawkins, P Foy, et al. Sapphire-derived all-glass optical fibers. Nature Photonics, 6, 629-635(2012).

    [56] J Xu, H H Liu, F F Pang, et al. Cascaded Mach-Zehnder interferometers in crystallized sapphire-derived fiber for temperature-insensitive filters. Optical Materials Express, 7, 1406-1413(2017).

    [57] H Liu, F Pang, L Hong, et al. Crystallization-induced refractive index modulation on sapphire-derived fiber for ultrahigh temperature sensing. Optics Express, 27, 6201-6209(2019).

    [58] S C Wang, T I Yang, D Y Jheng, et al. Broadband and high-brightness light source: glass-clad Ti: sapphire crystal fiber. Optics Letters, 40, 5594-5597(2015).

    [59] C C Lai, C Y Lo, D H Nguyen, et al. Atomically smooth hybrid crystalline-core glass-clad fibers for low-loss broadband wave guiding. Optics Express, 24, 20089-20106(2016).

    [60] T Elsmann, A Lorenz, N S Yazd, et al. High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers. Optics Express, 22, 26825-26833(2014).

    [61] D Grobnic, S J Mihailov, J Ballato, et al. Type I and II Bragg gratings made with infrared femtosecond radiation in high and low alumina content aluminosilicate optical fibers. Optica, 2, 313-322(2015).

    [62] Q Guo, Z X Jia, X P Pan, et al. Sapphire-derived fiber Bragg gratings for high temperature sensing. Crystals, 11, 946(2021).

    [63] H M Jiang, Z S Cao, R D Yang, et al. Synthesis and characterization of spinel MgAl2O4 thin film as sapphire optical fiber cladding for high temperature applications. Thin Solid Films, 539, 81-87(2013).

    [64] S Bera, B Liu, Y N Picard, et al. Fabrication and evaluation of sol-gel derived magnesium aluminate spinel-clad sapphire fiber. Optical Fiber Technology, 68, 102801(2022).

    [65] J J Wang, E M Lally, X P Wang, et al. ZrO2 thin-film-based sapphire fiber temperature sensor. Applied Optics, 51, 2129-2134(2012).

    [66] [66] Shen Y H, Tong L M, Chen S Y. Perfmance stability of the sapphire fiber cladding under high temperature [C]Harsh Environment Senss II. International Society f Optics Photonics, 1999, 3852: 134142.

    [67] X R Luan, R Yu, Q Q Zhang, et al. Boron nitride coating of sapphire optical fiber for high temperature sensing applications. Surface and Coatings Technology, 363, 203-209(2019).

    [68] S Chen, Q Zhang, X G Luan, et al. Sapphire optical fiber with SiBCN coating prepared by chemical vapor deposition for high-temperature sensing applications. Thin Solid Films, 709, 138242(2020).

    [69] M H Wang, P S Salter, F P Payne, et al. Single-mode sapphire fiber Bragg grating. Optics Express, 30, 15482-15494(2022).

    [70] [70] Grobnic D, Mihailov S J, Smelser C W, et al. Study of the sapphire Bragg gratings probed with multimode single mode signal from fiber collimats evanescent fiber tapers [C]Proceedings of SPIE, 2007, 6796: 67961J.

    [71] [71] Elsmann T, Habisreuther T, Becker M, et al. Physical properties of fiber Bragg gratings in single crystalline sapphire fibers[C] Bragg Gratings, Photosensitivity Poling in Glass Waveguides Materials, 2018: BM4A.2.

    [72] G N Shi, R Shurtz, G Pickrell, et al. Point-by-point inscribed sapphire parallel fiber Bragg gratings in a fully multimode system for multiplexed high-temperature sensing. Optics Letters, 47, 4725-4727(2022).

    [73] [73] Buric M, Liu B, Huang S, et al. Modified single crystal fibers f distributed sensing applications [C]SPIE Commercial + Scientific Sensing Imaging, 2017.

    [74] T Habisreuther, T Elsmann, Z W Pan, et al. Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics. Applied Thermal Engineering, 91, 860-865(2015).

    [75] B A Wilson, C M Petrie, T E Blue, et al. High-temperature effects on the light transmission through sapphire optical fiber. Journal of the American Ceramic Society, 101, 3452-3459(2018).

    [76] S Yang, D Homa, H Heyl, et al. Application of sapphire-fiber-Bragg-grating-based multi-point temperature sensor in boilers at a commercial power plant. Sensors, 19, 3211(2019).

    [77] J He, X Z Xu, B Du, et al. Stabilized ultra-high-temperature sensors based on inert gas-sealed sapphire fiber Bragg gratings. ACS Applied Materials & Interfaces, 14, 12359-12366(2022).

    [78] R Eisermann, S Krenek, T Habisreuther, et al. Metrological characterization of a high-temperature hybrid sensor using thermal radiation and calibrated sapphire fiber Bragg grating for process monitoring in harsh environments. Sensors, 22, 1034(2022).

    [79] S J Mihailov, D Grobnic, C W Smelser. High-temperature multiparameter sensor based on sapphire fiber Bragg gratings. Optics Letters, 35, 2810-2812(2010).

    [80] Xudong Ding, Yumin Zhang, Yanming Song, et al. Response characteristics of pure-quartz-core fiber Bragg grating under high temperature strain. Chinese Journal of Lasers, 44, 1106003(2017).

    [81] T Habisreuther, T Elsmann, A Graf, et al. High-temperature strain sensing using sapphire fibers with inscribed first-order Bragg gratings. IEEE Photonics Journal, 8, 6802608(2016).

    [82] H Chen, M Buric, P R Ohodnicki, et al. Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing. Applied Physics Reviews, 5, 011102(2018).

    [83] B A Wilson, T E Blue. Creation of an internal cladding in sapphire optical fiber using the 6 Li(n, α)3 H reaction. IEEE Sensors Journal, 17, 7433-7439(2017).

    [84] B A Wilson, T E Blue. Quasi-distributed temperature sensing using type-II fiber Bragg gratings in sapphire optical fiber to temperatures up to 1300℃. IEEE Sensors Journal, 18, 8345-8351(2018).

    Tools

    Get Citation

    Copy Citation Text

    Jun He, Xizhen Xu, Jia He, Jiafeng Wu, Zhuoda Li, Yiping Wang. Research progress and development tendency of sapphire fiber Bragg grating-based high-temperature sensors (invited)[J]. Infrared and Laser Engineering, 2022, 51(10): 20220700

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 30, 2022

    Accepted: --

    Published Online: Jan. 6, 2023

    The Author Email:

    DOI:10.3788/IRLA20220700

    Topics