Laser & Optoelectronics Progress, Volume. 62, Issue 4, 0415008(2025)

Enhanced Point Cloud Segmentation Method Using Positional Encoding and Channel Attention

Wei Zhang1,2、*, Zhilong Zeng1, Qi Fang1, Jie Song1, Guan Gui1, Shenghuai Wang1,2, and Chen Wang1,2
Author Affiliations
  • 1College of Mechanical Engineering, Hubei University of Automotive Technology, Shiyan 442002, Hubei , China
  • 2Hubei Zhongcheng Technology Industry Technique Academy Co., Ltd., Shiyan 442003, Hubei , China
  • show less
    Figures & Tables(12)
    PCANet structure
    Relative position encoding module
    CAA module
    Compact channel-wise comparator module and channel affinity estimator module
    Visualization of the segmentation results in ShapeNet. (a) Segmentation truth graph; (b) DeLA segmentation results; (c) PCANet segmentation results
    Visualization of the segmentation results in S3DIS. (a) Input point clouds; (b) segmentation results of SPoTr; (c) segmentation results of PCANet
    • Table 1. Part segmentation results on the ShapeNet dataset

      View table

      Table 1. Part segmentation results on the ShapeNet dataset

      Methodmeanaerobagcapcarchairearphonequitarknifelamplaptopmotormugpistolrocketskateboardtable
      PointNet83.783.478.782.574.989.673.091.585.980.895.365.293.081.257.972.880.6
      PointNet++85.182.479.087.777.390.871.891.085.983.795.371.694.181.358.776.482.6
      SCN2484.683.880.883.579.390.569.891.786.582.996.069.293.882.562.974.480.8
      DGCNN85.284.083.486.777.890.674.791.287.582.895.766.394.981.163.574.582.6
      3D-GCN85.183.184.086.677.590.374.190.986.483.895.666.894.881.359.675.782.8
      PointMLP2586.183.583.487.580.590.378.292.288.182.696.277.595.885.464.683.384.3
      SPoTr2687.2
      DeLA2787.086.986.388.483.592.578.692.987.884.896.779.496.684.565.778.483.8
      PCANet87.486.788.489.083.192.379.992.587.885.796.879.896.884.566.478.383.9
    • Table 2. Part segmentation Cat. mIoU and Ins. mIoU results on the ShapeNet dataset

      View table

      Table 2. Part segmentation Cat. mIoU and Ins. mIoU results on the ShapeNet dataset

      MethodCat. mIoUIns. mIoU
      PointNet80.483.7
      PointNet++81.985.1
      DGCNN82.385.2
      PointMLP84.686.1
      SPoTr85.487.2
      PCANet85.887.4
    • Table 3. Results of instances with different K values

      View table

      Table 3. Results of instances with different K values

      num-pointsKIns. mIoU /%
      2048085.42
      20481085.62
      20481585.64
      20482085.75
      20482585.50
      20483085.60
    • Table 4. Module importance analysis

      View table

      Table 4. Module importance analysis

      Position EncodeCCCCAEIns. mIoU /%
      85.0
      85.4
      85.5
      85.8
    • Table 5. Semantic segmentation results of S3DIS

      View table

      Table 5. Semantic segmentation results of S3DIS

      MethodOAmAccmIoU
      PointNet41.1
      PointNet++53.5
      DGCNN84.156.1
      KPConv1872.867.1
      PointNeXt2891.077.270.5
      SPoTr90.776.470.8
      PTv32991.879.473.4
      PCANet92.179.973.7
    • Table 6. Semantic segmentation time of S3DIS

      View table

      Table 6. Semantic segmentation time of S3DIS

      MethodEvery epoch /s
      PointNet104
      PointNet++140
      DGCNN225
      PointNeXt318
      SPoTr273
      PCANet148
    Tools

    Get Citation

    Copy Citation Text

    Wei Zhang, Zhilong Zeng, Qi Fang, Jie Song, Guan Gui, Shenghuai Wang, Chen Wang. Enhanced Point Cloud Segmentation Method Using Positional Encoding and Channel Attention[J]. Laser & Optoelectronics Progress, 2025, 62(4): 0415008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: May. 17, 2024

    Accepted: Jul. 29, 2024

    Published Online: Feb. 10, 2025

    The Author Email:

    DOI:10.3788/LOP241294

    CSTR:32186.14.LOP241294

    Topics