Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 1, 123(2021)

Highly stable blue perovskite light-emitting diodes induced by trifluoroacetate

YUAN Hao, KONG Ling-mei, WANG Lin, DOU Yong-jiang, LUO Yun, and YANG Xu-yong
Author Affiliations
  • [in Chinese]
  • show less
    References(54)

    [1] [1] WEHRENFENNIG C, EPERON G E, JOHNSTON M B, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites [J]. Adv. Mater., 2014, 26(10): 1584-1589.

    [2] [2] ZENG J P, LI X M, WU Y, et al. Space-confined growth of CsPbBr3 film achieving photodetectors with high performance in all figures of merit [J]. Adv. Funct. Mater., 2018, 28(43): 1804394.

    [3] [3] TAN Z K, MOGHADDAM R S, LAI M L, et al. Bright light-emitting diodes based on organometal halide perovskite[J]. Nat. Nanotechnol., 2014, 9(9): 687-692.

    [4] [4] HOYE R L Z, CHUA M R, MUSSELMAN K P, et al. Enhanced performance in fluorene-free organometal halide perovskite light-emitting diodes using tunable, low electron affinity oxide electron injectors [J]. Adv. Mater., 2015, 27(8): 1414-1419.

    [5] [5] SICHERT J A, TONG Y, MUTZ N, et al. Quantum size effect in organometal halide perovskite nanoplatelets [J]. Nano Lett., 2015, 15(10): 6521-6527.

    [6] [6] WANG H R, LI X M, YUAN M J, et al. Fast postmoisture treatment of luminescent perovskite films for efficient light-emitting diodes [J]. Small, 2018, 14(15): 1703410.

    [7] [7] KUMAWAT N K, DEY A, KUMAR A, et al. Band gap tuning of CH3NH3Pb(Br1-xClx)3 hybrid perovskite for blue electroluminescence [J]. ACS Appl. Mater. Interfaces, 2015, 7(24): 13119-13124.

    [8] [8] CHU Z M, ZHAO Y, MA F, et al. Large cation ethylammonium incorporated perovskite for efficient and spectra stable blue light-emitting diodes [J]. Nat. Commun., 2020, 11: 4165.

    [9] [9] LIU Y, CUI J Y, DU K, et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures [J]. Nat. Photonics, 2019, 13(11): 760-764.

    [10] [10] VASHISHTHA P, NG M,SHIVARUDRAIAH S B, et al. High efficiency blue and green light-emitting diodes using ruddlesden–popper inorganic mixed halide perovskites with butylammonium interlayers [J]. Chem. Mater., 2018, 31(1): 83-89.

    [11] [11] LI Z C, CHEN Z M, YANG Y C, et al. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5% [J]. Nat. Commun., 2019, 10: 1027.

    [12] [12] LENG M Y, YANG Y, ZENG K, et al. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability [J]. Adv. Funct. Mater., 2018, 28(1): 1704446.

    [13] [13] TAN Z F, LI J H, ZHANG C, et al. Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping [J]. Adv. Funct. Mater., 2018, 28(29): 1801131.

    [14] [14] LENG M Y, CHEN Z W, YANG Y, et al. Lead-free, blue emitting bismuth halide perovskite quantum dots [J]. Angew. Chem. Int. Ed., 2016, 55(48): 15012-15016.

    [15] [15] ZHITOMIRSKY D, VOZNYY O, HOOGLAND S, et al. Measuring charge carrier diffusion in coupled colloidal quantum dot solids [J]. ACS Nano, 2013, 7(6): 5282-5290.

    [16] [16] WANG Z B, YUAN F L, SUN W D, et al. Multifunctional p-type carbon quantum dots: a novel hole injection layer for high-performance perovskite light-emitting diodes with significantly enhanced stability [J]. Adv. Opt. Mater., 2019, 7(24): 1901299.

    [17] [17] CHENG L, CAO Y, GE R, et al. Sky-blue perovskite light-emitting diodes based on quasi-two-dimensional layered perovskites [J]. Chin. Chem. Lett., 2017, 28(1): 29-31.

    [18] [18] WANG Z B, WANG F Z, SUN W D, et al. Manipulating the trade-off between quantum yield and electrical conductivity for high-brightness quasi-2D perovskite light-emitting diodes [J]. Adv. Funct. Mater., 2018, 28(47): 1804187.

    [19] [19] WANG Q, REN J, PENG X F, et al. Efficient sky-blue perovskite light-emitting devices based on ethylammonium bromide induced layered perovskites [J]. ACS Appl. Mater. Interfaces, 2017, 9(35): 29901-29906.

    [20] [20] QUAN L N, ZHAO Y B,DE ARQUER F P G, et al. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission [J]. Nano Lett., 2017, 17(6): 3701-3709.

    [21] [21] CHEN Z M, ZHANG C Y, JIANG X F, et al. High-performance color-tunable perovskite light emitting devices through structural modulation from bulk to layered film [J]. Adv. Mater., 2017, 29(8): 1603157.

    [22] [22] CONGREVED N, WEIDMAN M C, SEITZ M, et al. Tunable light-emitting diodes utilizing quantum-confined layered perovskite emitters [J]. ACS Photonics, 2017, 4(3): 476-481.

    [23] [23] WANG Y K, MA D X, YUAN F L, et al. Chelating-agent-assisted control of CsPbBr3 quantum well growth enables stable blue perovskite emitters [J]. Nat. Commun., 2020, 11: 3674.

    [24] [24] HOKE E T, SLOTCAVAGE D J, DOHNER E R, et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics [J]. Chem. Sci., 2015, 6(1): 613-617.

    [25] [25] DRAGUTA S, SHARIA O, YOON S J, et al. Rationalizing the light-induced phase separation of mixed halide organic-inorganic perovskites [J]. Nat. Commun., 2017, 8: 200.

    [26] [26] WANG H L, ZHAO X F, ZHANG B H, et al. Blue perovskite light-emitting diodes based on RbX-doped polycrystalline CsPbBr3 perovskite films [J]. J. Mater. Chem. C, 2019, 7(19): 5596-5603.

    [27] [27] JIANG Y Z, QIN C C, CUI M H, et al. Spectra stable blue perovskite light-emitting diodes [J]. Nat. Commun., 2019, 10: 1868.

    [28] [28] LI J H, XU L M, WANG T, et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control [J]. Adv. Mater., 2017, 29(5): 1603885.

    [29] [29] SONG J Z, LI J H, LI X M, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3) [J]. Adv. Mater., 2015, 27(44): 7162-7167.

    [30] [30] CHO H, WOLF C, KIM J S, et al. High-efficiency solution-processed inorganic metal halide perovskite light-emitting diodes [J]. Adv. Mater., 2017, 29(31): 1700579.

    [31] [31] HILLS-KIMBALL K, PREZ M J, NAGAOKA Y, et al. Ligand engineering for Mn2+ doping control in CsPbCl3 perovskite nanocrystals via a quasi-solid solid cation exchange reaction [J]. Chem. Mater., 2020, 32(6): 2489-2500.

    [32] [32] CHENG J N, LI Y N, QU W, et al. Mechanochemical synthesis and characterization of Mn-doped CsPbCl3 perovskite nanocrystals [J]. J. Alloys Compd., 2020, 822: 153615.

    [33] [33] WANG H R, ZHANG X Y, WU Q Q, et al. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices [J]. Nat. Commun., 2019, 10: 665.

    [34] [34] LIU M, ZHONG G H, YIN Y M, et al. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight [J]. Adv. Sci., 2017, 4(11): 1700335.

    [35] [35] NAM J K, CHAI S U, CHA W, et al. Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells [J]. Nano Lett., 2017, 17(3): 2028-2033.

    [36] [36] CAO F, WANG H R, SHEN P Y, et al. High-efficiency and stable quantum dot light-emitting diodes enabled by a solution-processed metal-doped nickel oxide hole injection interfacial layer [J]. Adv. Funct. Mater., 2017, 27(42): 1704278.

    [37] [37] CHIH Y K, WANG J C, YANG R T, et al. NiOx electrode interlayer and CH3NH2/CH3NH3PbBr3 interface treatment to markedly advance hybrid perovskite-based light-emitting diodes [J]. Adv. Mater., 2016, 28(39): 8687-8694.

    [38] [38] BAI Y, CHEN H N, XIAO S, et al. Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance [J]. Adv. Funct. Mater., 2016, 26(17): 2950-2958.

    [39] [39] CHEN W, ZHOU Y C, CHEN G C, et al. Alkali chlorides for the suppression of the interfacial recombination in inverted planar perovskite solar cells [J]. Adv. Energy Mater., 2019, 9(19): 1803872.

    [40] [40] MASHFORD B S, STEVENSON M, POPOVIC Z, et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection [J]. Nat. Photonics, 2013, 7(5): 407-412.

    [41] [41] EMPEDOCLES S A, BAWENDI M G. Quantum-confined stark effect in single CdSe nanocrystallite quantum dots [J]. Science, 1997, 278(5346): 2114-2117.

    [42] [42] BISCHAK C G, HETHERINGTON C L, WU H, et al. Origin of reversible photoinduced phase separation in hybrid perovskites [J]. Nano Lett., 2017, 17(2): 1028-1033.

    [43] [43] LI W, ROTHMANN M U, LIU A, et al. Phase segregation enhanced ion movement in efficient inorganic CsPbIBr2 solar cells [J]. Adv. Energy Mater., 2017, 7(20): 1700946.

    [44] [44] TANG X F, VAN DEN BERG M, GU E N, et al. Local observation of phase segregation in mixed-halide perovskite [J]. Nano Lett., 2018, 18(3): 2172-2178.

    [45] [45] LU W, XIE K, PAN Y, et al. Effects of carbon-chain length of trifluoroacetate co-solvents for lithium-ion battery electrolytes using at low temperature [J]. J. Fluor. Chem., 2013, 156: 136-143.

    [46] [46] SHAO Y C, FANG Y J, LI T, et al. Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films [J]. Energy Environ. Sci., 2016, 9(5): 1752-1759.

    [47] [47] MARANDI F, NIKPEY Z, KHOSRAVI M, et al. Synthesis and characterization of lead(II) complexes with substituted 2,2’-bipyridines, trifluoroacetate, and furoyltrifluoroacetonate [J]. J. Coord. Chem., 2011, 64(17): 3012-3021.

    [48] [48] CAO X B, LI Y H, FANG F, et al. High quality perovskite films fabricated from Lewis acid-base adduct through molecular exchange [J]. RSC Adv., 2016, 6(75): 70925-70931.

    [52] [52] DENG W, XU X Z, ZHANG X J, et al. Organometal halide perovskite quantum dot light-emitting diodes [J]. Adv. Funct. Mater., 2016, 26(26): 4797-4802.

    [53] [53] HOU S C, GANG M K, QUAN Q M, et al. Efficient blue and white perovskite light-emitting diodes via manganese doping [J]. Joule, 2018, 2(11): 2421-2433.

    [54] [54] PANG P Y, JIN G R, LIANG C, et al. Rearranging low-dimensional phase distribution of quasi-2D perovskites for efficient sky-blue perovskite light-emitting diodes [J]. ACS Nano, 2020, 14(9): 11420-11430.

    [55] [55] WANG H L, XU Y S, WU J, et al. Bright and color-stable blue-light-emitting diodes based on three-dimensional perovskite polycrystalline films via morphology and interface engineering [J]. J. Phys. Chem. Lett., 2020, 11(4): 1411-1418.

    [56] [56] KIM H P, KIM J, KIM B S, et al. High-efficiency, blue, green, and near-infrared light-emitting diodes based on triple cation perovskite [J]. Adv. Opt. Mater., 2017, 5(7): 1600920.

    Tools

    Get Citation

    Copy Citation Text

    YUAN Hao, KONG Ling-mei, WANG Lin, DOU Yong-jiang, LUO Yun, YANG Xu-yong. Highly stable blue perovskite light-emitting diodes induced by trifluoroacetate[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(1): 123

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 24, 2020

    Accepted: --

    Published Online: Aug. 22, 2021

    The Author Email:

    DOI:10.37188/cjlcd.2020-0286

    Topics