Optical Technique, Volume. 48, Issue 2, 195(2022)
Research progress and application of Nd∶YAG 1319nm laser
[2] [2] Ross M. YAG laser operation by semiconductor laser pumping[J]. Proceedings of the Institute of Electrical and Electronics Engineers,1968,56(2):196-197.
[3] [3] Cheng H P, Liu Y C, Huang T L, et al. Orthogonally polarized single-longitudinal-mode operation in a dual-wavelength monolithic Nd∶YAG laser at 1319nm and 1338nm[J]. Photonics Research,2018,6(8):815-820.
[4] [4] Morton PA, Morton MJ. High-Power, Ultra-Low noise hybrid lasers for microwave photonics and optical sensing[J]. Journal of Lightwave Technology,2018,36(21):5048-5057.
[9] [9] Trutna WR, Jr, Donald DK, et al. Unidirectional diode-laser-pumped Nd∶YAG ring laser with a small magnetic field[J]. Optics Letters,1987,12(4):248-250.
[11] [11] Gavrilovic P, O’Neill MS, Zarrabi JH, et al. High-power, single-frequency diode-pumped Nd∶YAG microcavity lasers at 1.3μm[J]. Applied Physics Letters,1994,65(13):1620-1622.
[12] [12] Hall GJ, Ferguson AI. Generation of single-frequency radiation at 1064, 1319, and 659.5nm with an all-solid-state, out-of-plane Nd∶YAG ring laser[J]. Optics Letters,1994,19(8):557-559.
[13] [13] Inoue Y, Fujikawa S. Diode-pumped Nd∶YAG laser producing 122W CW Power at 1.319μm[J]. IEEE Journal of Quantum Electronics,2000,36(6):751-756.
[14] [14] Lu JH, Lu JR, Murai T, et al. 36W diode-pumped continuous-wave 1319nm Nd∶YAG ceramic laser[J]. Optics Letters,2002,27(13):1120-1122.
[19] [19] Li M L, Zhao W F, Zhang S B, et al. 1.86W cw single-frequency 1319nm ring laser pumped at 885nm[J]. Applied Optics,2012,51(9):1241-1244.
[20] [20] Gao M W, Zhao Y, Zhang L Y, et al. 1319-nm single-frequency output from dif fusion-bonded monolithic nonplanar Nd∶YAG ring resonator with undoped end[J]. Chinese Optics Letters,2013,11(4):041406-041408.
[21] [21] Williams KJ, Goldberg L, Esman RD, et al. 6-34GHz Offset Phase-Locking of Nd∶YAG 1319nm Nonplanar Ring Lasers[J]. Electronics Letters,1989,25(18):1242-1243.
[24] [24] Wang Z Y, Wu X. 1.32μm Nd3+∶YAG Pulse Laser[J]. Chinese Journal of Lasers,2002,11(2):81-83.
[26] [26] Krennrich D, Knappe R, Henrich B, et al. A comprehensive study of Nd∶YAG,Nd∶YAlO3,Nd∶YVO4 and Nd∶YGdVO4 lasers operating at wavelengths of 0.9 and 1.3μm.Part 2:passively mode locked-operation[J].Applied Physics B,2008,92(2):175-183.
[27] [27] Wan Y F, Han K Z, Wang Y, et al. High power CW and Q-switched operation of a diode-side-pumped Nd∶YAG 1319nm laser[J]. Chinese Optics Letters,2008,6(2):124-126.
[28] [28] Zhu H, Zhang G, Huang C, et al. Diode-side-pumped acoustooptic Q-switched 1319nm Nd∶YAG laser[J]. IEEE Journal of Quantum Electronics,2008,44(5):480-484.
[34] [34] Zhang H N, Li P, Chen X H, et al. Diode-pumped passively Q-switched Nd∶YAG ceramic laser at 1319nm with Co2+∶LaMgAl11O19 crystal as the saturable absorber[J]. Laser Physics,2012,22(2):418-422.
[35] [35] Zhang L, Yu H, Yan S, et al. A 1319nm diode-side-pumped Nd∶YAG laser Q-switched with graphene oxide[J]. Journal of Modern Optics,2013,60(15):1287-1289.
[36] [36] Gao S. Diode-end-pumped passively Q-switched Nd∶YAG crystal laser with V∶YAG saturable absorber at 1319 and 1338 nm[J]. Journal of Modern Optics,2015,62(13):1098-1101.
[37] [37] Sato A, Okubo S, Asai K, et al. Stable dual-wavelength Q-switched Nd∶YAG laser using a two-step energy extraction technique[J]. Appl Opt,2015,54(10):3032-3042.
[38] [38] Sun Y, Liu W. Experimental Study on LiNbO3 as Q-switched crystal in 1319nm laser[C]∥International Power, Electronics and Materials Engineering Conference. Dalian, China: Atlantis Press,2015:690-693.
[39] [39] Li L P, Li Y J, Song Y J, et al. 10.3W diode-pumped passively mode-locked Nd∶YAG laser at 1319nm with a semiconductor saturable absorber mirror[J]. Laser Physics,2019,29(9):095001.
[40] [40] Sun J, Zeng C, Dong Y, et al. Theoretical and experimental study of the dual-wavelength alternately Q-switched Nd∶YAG laser[C]∥ Advanced Laser Technology and Application. Beijing, China: SPIE,2020:115620K.
[42] [42] Xie S Y, Lu Y F, Ma Q L, et al. High power high beam quality diode-pumped 1319nm Nd∶YAG oscillator-amplifier laser system[J]. Chinese Physics B,2010,19(6):064208.
[43] [43] Zheng J K, Bo Y, Xie S Y, et al. High power quasi-continuous-wave diode-end-pumped Nd∶YAG slab amplifier at 1319nm[J]. Chinese Physics Letters,2013,30(7):074202.
[44] [44] Xie S Y, Zhang X F, Le X Y, et al. A quasi-continuous dual-end 885nm diode-pumped three-mirror ring-cavity laser operating at 1319nm[J]. Acta Physica Sinica,2016,65(15):154205.
[45] [45] Guo C, Zuo J, Bian Q, et al. Compact, high-power, high-beam-quality quasi-CW microsecond five-pass zigzag slab 1319nm amplifier[J]. Applied Optics,2017,56(12):3445-3448.
[46] [46] Xu X, Lu Y, Zhang L, et al. Relaxation oscillation suppressed, narrow linewidth, high beam quality, 1319nm long-pulsed duration laser[J]. Applied Optics,2018,57(16):4692-4695.
[47] [47] Wang J T, Lin W P, Zhang L, et al. 1319nm Nd∶YAG planar waveguide laser amplifier with an optocal to optical efficiency of 15%[C]∥OSA Laser Congress 2019. New York: Optical Society of America,2019:JTh3A.23.
[48] [48] Xiao Q, Pan X, Guo J, et al. High-stability, high-beam-quality, and pulse-width-tunable 1319nm laser system for VISAR applications in high-power laser facilities[J]. Applied Optics,2020,59(20):6070-6075.
[49] [49] Zhang X, He T, Luo X, et al. Study of long-pulse quasicontinuous wave INNOSLAB amplifier at 1319nm[J]. Optical Engineering,2020,59(05):056112.
[50] [50] Sun Z, Li R, Bi Y, et al. Generation of 11.5W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd∶YAG laser in a 4-cm LBO[J]. Optics Communications,2004,241(1-3):167-172.
[51] [51] Mu X, Ding Y J. Efficient generation of coherent blue light at 440nm by intracavity-frequency-tripling 1319nm emission from a Nd∶YAG laser[J]. Optics Letters,2005,30(11):1372-1374.
[52] [52] Peng H B, HouW, ChenY H, et al. 28W red light output at 659.5nm by intracavity frequency doubling of a Nd∶YAG laser using LBO[J]. Optics Express,2006,14(9):3961-3967.
[53] [53] Peng H B, HouW, ChenY H, et al. Generation of 7.6-W blue laser by frequencytripling of a Nd∶YAG laser in LBO crystals[J]. Optics Express,2006,14(14):6543-6549.
[54] [54] Dai S B, Chen M, Zhang S J, et al. 2.14mW deep-ultraviolet laser at 165nm by eighth-harmonic generation of a 1319nm Nd∶YAG laser in KBBF[J]. Laser Physics Letters,2016,13(3):035401.
[55] [55] Denman CA, Hillman PD, Moore GT, et al. 50-W CW Single Frequency 589nm FASOR[C]∥Optical Society of America(OSA) Topical Meeting on Advanced Solid-State Photonics(ASSP). New York:OSA,2005:698-702.
[56] [56] Saito N, Akagawa K, Hayano Y, et al. 1W 589nm Coherent Light-Source Achieved by Quasi-Intracavity Sum-Frequency Generation[C]∥Optical Society of America(OSA) Topical Meeting on Advanced Solid-State Photonics(ASSP).New York:OSA,2005:457-461.
[57] [57] Mimoun E, Sarlo LD, Zondy J-J, et al. Sum-frequency generation of 589 nm light with near-unit efficiency[J]. Optics Express,2008,16(23):18684-18691.
[58] [58] Hunziker C, Jazbinek M, Kwon S-J, et al. Electro-optic modulation in high-efficiency crystalline OH1 optical waveguides[C]∥Lasers and Electro-Optics/International Quantum Electronics Conference. New York: OSA Technical Digest,2009:CFQ1.
[59] [59] Tang T, Zhang F, Wang M, et al. Two-dimensional tellurene nanosheets as saturable absorber of passively Q-switched Nd∶YAG solid-state laser[J]. Chinese Optics Letters,2020,18(4):041403.
[62] [62] Sadick NS, Schecter AK. A preliminary study of utilization of the 1320nm Nd∶YAG laser for the treatment of acne scarring[J]. Dermatologic surgery:official publication for American Society for Dermatologic Surgery,2004,30(7):995-1000.
[63] [63] Kassir M, Arora G, Galadari H, et al. Efficacy of 595 and 1319nm pulsed dye laser in the treatment of acne vulgaris: a narrative review[J]. Journal of Cosmetic and Laser Therapy,2020,22(3):111-114.
[64] [64] Moreno MJ, Ling B, Stanimirovic DB. In vivo near-infrared fluorescent optical imaging for CNS drug discovery[J]. Expert Opin Drug Discov,2020,15(8):903-915.
[65] [65] Zhang Z, Fang X, Liu Z, et al. Semiconducting polymer dots with dual-enhanced NIR-IIa fluorescence for through-skull Mouse-Brain imaging[J]. Angewandte Chemie International Edition,2020,59(9):3691-3698.
[68] [68] Lu Y H, Xie G, Zhang L, et al. High-energy all-solid-state sodium beacon laser with line width of 0.6GHz[J]. Applied Physics B,2014,118(2):253-259.
[69] [69] Saito N, Akagawa K, Hayano Y, et al. Synchronization of 1064 and 1319nm pulses emitted from actively mode-locked Nd∶YAG lasers and its application to 589nm sum-frequency generation[J]. Japanese Journal of Applied Physics,2005,44(49):L1484-L1487.
[70] [70] Lu Y, Zhang X, Yao Z. All solid-state sum-frequency generation of 1.12W continuous-wave laser at 588nm[J]. Chinese Optics Letters,2006,5(6):353-354.
[71] [71] Kawahara TD, Nozawa S, Saito N, et al. Sodium temperature/wind lidar based on laser-diode-pumped Nd∶YAG lasers deployed at Tromso, Norway (69.6 degrees N, 19.2 degrees E)[J]. Optics Express,2017,25(12):A491-A501.
[72] [72] Bian Q, Bo Y, Zuo JW, et al. High-repetition-rate 100W level sodium beacon laser for a multi-conjugate adaptive Optics system[J]. Optics Letters,2020,45(7):1818-1821.
Get Citation
Copy Citation Text
CHEN Tanghan, LIU Xiaomeng, TIAN Ying, WANG Jiang, WANG Hongjun. Research progress and application of Nd∶YAG 1319nm laser[J]. Optical Technique, 2022, 48(2): 195