Laboratory Animal and Comparative Medicine, Volume. 45, Issue 4, 422(2025)

Advances in the Application of Zebrafish in the Research of Inflammatory Bowel Disease Mechanisms and Drug Development

ZHAO Xin, WANG Chenxi, SHI Wenqing, and LOU Yuefen*
Author Affiliations
  • Department of Pharmacy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
  • show less
    References(47)

    [1] [1] ASHTON J J, BEATTIE R M. Inflammatory bowel disease: recent developments[J]. Arch Dis Child, 2024, 109(5): 370-376. DOI: 10.1136/archdischild-2023-325668.

    [2] [2] XU L, HE B J, SUN Y X, et al. Incidence of inflammatory bowel disease in urban China: a nationwide population-based study[J]. Clin Gastroenterol Hepatol, 2023, 21(13): 3379-3386.e29. DOI: 10.1016/j.cgh.2023.08.013.

    [3] [3] SHAO B L, YANG W J, CAO Q. Landscape and predictions of inflammatory bowel disease in China: China will enter the Compounding Prevalence stage around 2030[J]. Front Public Health, 2022, 10: 1032679. DOI: 10.3389/fpubh.2022.1032679.

    [4] [4] KATSANDEGWAZA B, HORSNELL W, SMITH K. Inflammatory bowel disease: a review of pre-clinical murine models of human disease[J]. Int J Mol Sci, 2022, 23(16): 9344. DOI: 10.3390/ijms23169344.

    [5] [5] YANG H B, LUAN Y, LIU T T, et al. A map ofcis-regulatory elements and 3D genome structures in zebrafish[J]. Nature, 2020, 588(7837): 337-343. DOI: 10.1038/s41586-020-2962-9.

    [7] [7] XIA H, CHEN H M, CHENG X, et al. Zebrafish: an efficient vertebrate model for understanding role of gut microbiota[J]. Mol Med, 2022, 28(1): 161. DOI: 10.1186/s10020-022-00579-1.

    [8] [8] FERGUSON M, FOLEY E. Microbial recognition regulates intestinal epithelial growth in homeostasis and disease[J]. FEBS J, 2022, 289(13): 3666-3691. DOI: 10.1111/febs.15910.

    [9] [9] WILLMS R J, FOLEY E. Mechanisms of epithelial growth and development in the zebrafish intestine[J]. Biochem Soc Trans, 2023, 51(3): 1213-1224. DOI: 10.1042/BST20221375.

    [10] [10] SHAN Y, LEE M, CHANG E B. The gut microbiome and inflammatory bowel diseases[J]. Annu Rev Med, 2022, 73: 455-468. DOI: 10.1146/annurev-med-042320-021020.

    [11] [11] CORNUAULT J K, BYATT G, PAQUET M E, et al. Zebrafish: a big fish in the study of the gut microbiota[J]. Curr Opin Biotechnol, 2022, 73: 308-313. DOI: 10.1016/j.copbio.2021.09.007.

    [12] [12] ZHONG X T, LI J L, LU F R, et al. Application of zebrafish in the study of the gut microbiome[J]. Animal Model Exp Med, 2022, 5(4): 323-336. DOI: 10.1002/ame2.12227.

    [13] [13] OEHLERS S H, FLORES M V, HALL C J, et al. Chemically induced intestinal damage models in zebrafish larvae[J]. Zebrafish, 2013, 10(2): 184-193. DOI: 10.1089/zeb.2012.0824.

    [14] [14] BRUGMAN S, NIEUWENHUIS E E S. Oxazolone-induced intestinal inflammation in adult zebrafish[J]. Methods Mol Biol, 2017, 1559: 311-318. DOI: 10.1007/978-1-4939-6786-5_21.

    [15] [15] FLEMING A, JANKOWSKI J, GOLDSMITH P.In vivoanalysis of gut function and disease changes in a zebrafish larvae model of inflammatory bowel disease: a feasibility study[J]. Inflamm Bowel Dis, 2010, 16(7): 1162-1172. DOI: 10.1002/ibd.21200.

    [16] [16] OEHLERS S H, FLORES M V, OKUDA K S, et al. A chemical enterocolitis model in zebrafish larvae that is dependent on microbiota and responsive to pharmacological agents[J]. Dev Dyn, 2011, 240(1): 288-298. DOI: 10.1002/dvdy.22519.

    [17] [17] OEHLERS S H, FLORES M V, HALL C J, et al. Retinoic acid suppresses intestinal mucus production and exacerbates experimental enterocolitis[J]. Dis Model Mech, 2012, 5(4): 457-467. DOI: 10.1242/dmm.009365.

    [18] [18] ZHAO S Y, XIA J H, WU X H, et al. Deficiency in class ⅢPI3-kinase confers postnatal lethality with IBD-like features in zebrafish[J]. Nat Commun, 2018, 9(1): 2639. DOI: 10.1038/s41467-018-05105-8.

    [19] [19] ZHAO Q, CHANG H, ZHENG J, et al. A novel Trmt5-deficient zebrafish model with spontaneous inflammatory bowel disease-like phenotype[J]. Signal Transduct Target Ther, 2023, 8(1): 86. DOI: 10.1038/s41392-023-01318-6.

    [20] [20] PARK S C, JEEN Y T. Genetic studies of inflammatory bowel disease-focusing on Asian patients[J]. Cells, 2019, 8(5): 404. DOI: 10.3390/cells8050404.

    [21] [21] OEHLERS S H, FLORES M V, HALL C J, et al. The inflammatory bowel disease (IBD) susceptibility genesNOD1 andNOD2 have conserved anti-bacterial roles in zebrafish[J]. Dis Model Mech, 2011, 4(6): 832-841. DOI: 10.1242/dmm.006122.

    [22] [22] SIFUENTES-DOMINGUEZ L F, LI H Y, LLANO E, et al.SCGNdeficiency results in colitis susceptibility[J]. eLife, 2019, 8: e49910. DOI: 10.7554/eLife.49910.

    [23] [23] KAYA B, DOAS C, WUGGENIG P, et al. Lysophosphatidic acid-mediated GPR35 signaling in CX3CR1+ macrophages regulates intestinal homeostasis[J]. Cell Rep, 2020, 32(5): 107979. DOI: 10.1016/j.celrep.2020.107979.

    [24] [24] LAI C Y, YEH K Y, LIU B F, et al. microRNA-21 plays multiple oncometabolic roles in colitis-associated carcinoma and colorectal cancerviathe PI3K/AKT, STAT3, and PDCD4/TNF- signaling pathways in zebrafish[J]. Cancers, 2021, 13(21): 5565. DOI: 10.3390/cancers13215565.

    [25] [25] MARJORAM L, ALVERS A, ELIZABETH DEERHAKE M, et al. Epigenetic control of intestinal barrier function and inflammation in zebrafish[J]. Proc Natl Acad Sci USA, 2015, 112(9): 2770-2775. DOI: 10.1073/pnas.1424089112.

    [26] [26] BRUGMAN S, LIU K Y, LINDENBERGH-KORTLEVE D, et al. Oxazolone-induced enterocolitis in zebrafish depends on the composition of the intestinal microbiota[J]. Gastroenterology, 2009, 137(5): 1757-1767.e1. DOI: 10.1053/j.gastro.2009.07.069.

    [27] [27] KANTHER M, SUN X L, MHLBAUER M, et al. Microbial colonization induces dynamic temporal and spatial patterns of NF-B activation in the zebrafish digestive tract[J]. Gastroenterology, 2011, 141(1): 197-207. DOI: 10.1053/j.gastro.2011.03.042.

    [28] [28] THAKUR P C, DAVISON J M, STUCKENHOLZ C, et al. Dysregulated phosphatidylinositol signaling promotes endoplasmic-reticulum-stress-mediated intestinal mucosal injury and inflammation in zebrafish[J]. Dis Model Mech, 2014, 7(1): 93-106. DOI: 10.1242/dmm.012864.

    [29] [29] VAN DER VAART M, VAN SOEST J J, SPAINK H P, et al. Functional analysis of a zebrafish myd88 mutant identifies key transcriptional components of the innate immune system[J]. Dis Model Mech, 2013, 6(3): 841-854. DOI: 10.1242/dmm.010843.

    [30] [30] SANMARCO L M, CHAO C C, WANG Y C, et al. Identification of environmental factors that promote intestinal inflammation[J]. Nature, 2022, 611(7937): 801-809. DOI: 10.1038/s41586-022-05308-6.

    [31] [31] DIAZ O E, SORINI C, MORALES R A, et al. Perfluoro-octanesulfonic acid modulates barrier function and systemic T-cell homeostasis during intestinal inflammation[J]. Dis Model Mech, 2021, 14(12): dmm049104. DOI: 10.1242/dmm.049104.

    [32] [32] XIAO W, HU C Y, NI Y F, et al. 27-Hydroxycholesterol activates the GSK-3/-catenin signaling pathway resulting in intestinal fibrosis by inducing oxidative stress: effect of dietary interventions[J]. Inflamm Res, 2024, 73(2): 289-304. DOI: 10.1007/s00011-023-01835-8.

    [33] [33] FLORES E, DUTTA S, BOSSERMAN R, et al. Colonization of larval zebrafish (Danio rerio) with adherent-invasiveEscherichia coliprevents recovery of the intestinal mucosa from drug-induced enterocolitis[J]. mSphere, 2023, 8(6): e0051223. DOI: 10.1128/msphere.00512-23.

    [34] [34] RAMANAN D, BOWCUTT R, LEE S C, et al. Helminth infection promotes colonization resistanceviatype 2 immunity[J]. Science, 2016, 352(6285): 608-612. DOI: 10.1126/science.aaf3229.

    [35] [35] HAARDER S, KANIA P W, HOLM T L, et al. Effect of ES products fromAnisakis(Nematoda: Anisakidae) on experimentally induced colitis in adult zebrafish[J]. Parasite Immunol, 2017, 39(10): e12456. DOI: 10.1111/pim.12456.

    [36] [36] REN X X, LIU Q Y, ZHOU P R, et al. DHX9 maintains epithelial homeostasis by restraining R-loop-mediated genomic instability in intestinal stem cells[J]. Nat Commun, 2024, 15(1): 3080. DOI: 10.1038/s41467-024-47235-2.

    [37] [37] HABJAN E, SCHOUTEN G K, SPEER A, et al. Diving into drug-screening: zebrafish embryos as anin vivoplatform for antimicrobial drug discovery and assessment[J]. FEMS Microbiol Rev, 2024, 48(3): fuae011. DOI: 10.1093/femsre/fuae011.

    [38] [38] SILVA N V, CARREGOSA D, GONALVES C, et al. A dietary cholesterol-based intestinal inflammation assay for improving drug-discovery on inflammatory bowel diseases[J]. Front Cell Dev Biol, 2021, 9: 674749. DOI: 10.3389/fcell.2021.674749.

    [39] [39] SHENG Y, LI H L, LIU M J, et al. A manganese-superoxide dismutase fromThermus thermophilusHB27 suppresses inflammatory responses and alleviates experimentally induced colitis[J]. Inflamm Bowel Dis, 2019, 25(10): 1644-1655. DOI: 10.1093/ibd/izz097.

    [40] [40] MOUSAVI T, HASSANI S, BAEERI M, et al. Comparison of the safety and efficacy of fingolimod and tofacitinib in the zebrafish model of colitis[J]. Food Chem Toxicol, 2022, 170: 113509. DOI: 10.1016/j.fct.2022.113509.

    [41] [41] JEFREMOW A, NEURATH M F. Novel small molecules in IBD: current state and future perspectives[J]. Cells, 2023, 12(13): 1730. DOI: 10.3390/cells12131730.

    [42] [42] HUANG X D, AI F, JI C, et al. A rapid screening method of candidate probiotics for inflammatory bowel diseases and the anti-inflammatory effect of the selected strainBacillus smithiiXY1[J]. Front Microbiol, 2021, 12: 760385. DOI: 10.3389/fmicb.2021.760385.

    [43] [43] NAG D, FARR D, RAYCHAUDHURI S, et al. An adult zebrafish model for adherent-invasiveEscherichia coliindicates protection from AIEC infection by probioticE.coliNissle[J]. iScience, 2022, 25(7): 104572. DOI: 10.1016/j.isci.2022.104572.

    [44] [44] CHEN H J, LEI P Y, JI H, et al.Escherichia coliNissle 1917 ghosts alleviate inflammatory bowel disease in zebrafish[J]. Life Sci, 2023, 329: 121956. DOI: 10.1016/j.lfs.2023.121956.

    [45] [45] CHEN M, LIU C, DAI M Z, et al.Bifidobacterium lactisBL-99 modulates intestinal inflammation and functions in zebrafish models[J]. PLoS One, 2022, 17(2): e0262942. DOI: 10.1371/journal.pone.0262942.

    [46] [46] YU Y R, CHEN J, ZHANG X H, et al. Identification of anti-inflammatory compounds from Zhongjing formulae by knowledge mining and high-content screening in a zebrafish model of inflammatory bowel diseases[J]. Chin Med, 2021, 16(1): 42. DOI: 10.1186/s13020-021-00452-z.

    [47] [47] JIA D S, TIAN X, CHEN Y T, et al. Preparation of enzymatic hydrolysates of mulberry leaf flavonoids and investigation into its treatment and mechanism for zebrafish inflammatory bowel disease[J]. Fish Shellfish Immunol, 2024, 154: 109960. DOI: 10.1016/j.fsi.2024.109960.

    [48] [48] LI Y, LIU X J, SU S L, et al. Evaluation of anti-inflammatory and antioxidant effectsofChrysanthemumstem and leaf extract on zebrafish inflammatory bowel disease model[J]. Molecules, 2022, 27(7): 2114. DOI: 10.3390/molecules27072114.

    Tools

    Get Citation

    Copy Citation Text

    ZHAO Xin, WANG Chenxi, SHI Wenqing, LOU Yuefen. Advances in the Application of Zebrafish in the Research of Inflammatory Bowel Disease Mechanisms and Drug Development[J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 422

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 13, 2024

    Accepted: Sep. 10, 2025

    Published Online: Sep. 10, 2025

    The Author Email: LOU Yuefen (louyuefen@tongji.edu.cn)

    DOI:10.12300/j.issn.1674-5817.2024.170

    Topics