Laboratory Animal and Comparative Medicine, Volume. 45, Issue 4, 422(2025)
Advances in the Application of Zebrafish in the Research of Inflammatory Bowel Disease Mechanisms and Drug Development
[1] [1] ASHTON J J, BEATTIE R M. Inflammatory bowel disease: recent developments[J]. Arch Dis Child, 2024, 109(5): 370-376. DOI: 10.1136/archdischild-2023-325668.
[2] [2] XU L, HE B J, SUN Y X, et al. Incidence of inflammatory bowel disease in urban China: a nationwide population-based study[J]. Clin Gastroenterol Hepatol, 2023, 21(13): 3379-3386.e29. DOI: 10.1016/j.cgh.2023.08.013.
[3] [3] SHAO B L, YANG W J, CAO Q. Landscape and predictions of inflammatory bowel disease in China: China will enter the Compounding Prevalence stage around 2030[J]. Front Public Health, 2022, 10: 1032679. DOI: 10.3389/fpubh.2022.1032679.
[4] [4] KATSANDEGWAZA B, HORSNELL W, SMITH K. Inflammatory bowel disease: a review of pre-clinical murine models of human disease[J]. Int J Mol Sci, 2022, 23(16): 9344. DOI: 10.3390/ijms23169344.
[5] [5] YANG H B, LUAN Y, LIU T T, et al. A map ofcis-regulatory elements and 3D genome structures in zebrafish[J]. Nature, 2020, 588(7837): 337-343. DOI: 10.1038/s41586-020-2962-9.
[7] [7] XIA H, CHEN H M, CHENG X, et al. Zebrafish: an efficient vertebrate model for understanding role of gut microbiota[J]. Mol Med, 2022, 28(1): 161. DOI: 10.1186/s10020-022-00579-1.
[8] [8] FERGUSON M, FOLEY E. Microbial recognition regulates intestinal epithelial growth in homeostasis and disease[J]. FEBS J, 2022, 289(13): 3666-3691. DOI: 10.1111/febs.15910.
[9] [9] WILLMS R J, FOLEY E. Mechanisms of epithelial growth and development in the zebrafish intestine[J]. Biochem Soc Trans, 2023, 51(3): 1213-1224. DOI: 10.1042/BST20221375.
[10] [10] SHAN Y, LEE M, CHANG E B. The gut microbiome and inflammatory bowel diseases[J]. Annu Rev Med, 2022, 73: 455-468. DOI: 10.1146/annurev-med-042320-021020.
[11] [11] CORNUAULT J K, BYATT G, PAQUET M E, et al. Zebrafish: a big fish in the study of the gut microbiota[J]. Curr Opin Biotechnol, 2022, 73: 308-313. DOI: 10.1016/j.copbio.2021.09.007.
[12] [12] ZHONG X T, LI J L, LU F R, et al. Application of zebrafish in the study of the gut microbiome[J]. Animal Model Exp Med, 2022, 5(4): 323-336. DOI: 10.1002/ame2.12227.
[13] [13] OEHLERS S H, FLORES M V, HALL C J, et al. Chemically induced intestinal damage models in zebrafish larvae[J]. Zebrafish, 2013, 10(2): 184-193. DOI: 10.1089/zeb.2012.0824.
[14] [14] BRUGMAN S, NIEUWENHUIS E E S. Oxazolone-induced intestinal inflammation in adult zebrafish[J]. Methods Mol Biol, 2017, 1559: 311-318. DOI: 10.1007/978-1-4939-6786-5_21.
[15] [15] FLEMING A, JANKOWSKI J, GOLDSMITH P.In vivoanalysis of gut function and disease changes in a zebrafish larvae model of inflammatory bowel disease: a feasibility study[J]. Inflamm Bowel Dis, 2010, 16(7): 1162-1172. DOI: 10.1002/ibd.21200.
[16] [16] OEHLERS S H, FLORES M V, OKUDA K S, et al. A chemical enterocolitis model in zebrafish larvae that is dependent on microbiota and responsive to pharmacological agents[J]. Dev Dyn, 2011, 240(1): 288-298. DOI: 10.1002/dvdy.22519.
[17] [17] OEHLERS S H, FLORES M V, HALL C J, et al. Retinoic acid suppresses intestinal mucus production and exacerbates experimental enterocolitis[J]. Dis Model Mech, 2012, 5(4): 457-467. DOI: 10.1242/dmm.009365.
[18] [18] ZHAO S Y, XIA J H, WU X H, et al. Deficiency in class ⅢPI3-kinase confers postnatal lethality with IBD-like features in zebrafish[J]. Nat Commun, 2018, 9(1): 2639. DOI: 10.1038/s41467-018-05105-8.
[19] [19] ZHAO Q, CHANG H, ZHENG J, et al. A novel Trmt5-deficient zebrafish model with spontaneous inflammatory bowel disease-like phenotype[J]. Signal Transduct Target Ther, 2023, 8(1): 86. DOI: 10.1038/s41392-023-01318-6.
[20] [20] PARK S C, JEEN Y T. Genetic studies of inflammatory bowel disease-focusing on Asian patients[J]. Cells, 2019, 8(5): 404. DOI: 10.3390/cells8050404.
[21] [21] OEHLERS S H, FLORES M V, HALL C J, et al. The inflammatory bowel disease (IBD) susceptibility genesNOD1 andNOD2 have conserved anti-bacterial roles in zebrafish[J]. Dis Model Mech, 2011, 4(6): 832-841. DOI: 10.1242/dmm.006122.
[22] [22] SIFUENTES-DOMINGUEZ L F, LI H Y, LLANO E, et al.SCGNdeficiency results in colitis susceptibility[J]. eLife, 2019, 8: e49910. DOI: 10.7554/eLife.49910.
[23] [23] KAYA B, DOAS C, WUGGENIG P, et al. Lysophosphatidic acid-mediated GPR35 signaling in CX3CR1+ macrophages regulates intestinal homeostasis[J]. Cell Rep, 2020, 32(5): 107979. DOI: 10.1016/j.celrep.2020.107979.
[24] [24] LAI C Y, YEH K Y, LIU B F, et al. microRNA-21 plays multiple oncometabolic roles in colitis-associated carcinoma and colorectal cancerviathe PI3K/AKT, STAT3, and PDCD4/TNF- signaling pathways in zebrafish[J]. Cancers, 2021, 13(21): 5565. DOI: 10.3390/cancers13215565.
[25] [25] MARJORAM L, ALVERS A, ELIZABETH DEERHAKE M, et al. Epigenetic control of intestinal barrier function and inflammation in zebrafish[J]. Proc Natl Acad Sci USA, 2015, 112(9): 2770-2775. DOI: 10.1073/pnas.1424089112.
[26] [26] BRUGMAN S, LIU K Y, LINDENBERGH-KORTLEVE D, et al. Oxazolone-induced enterocolitis in zebrafish depends on the composition of the intestinal microbiota[J]. Gastroenterology, 2009, 137(5): 1757-1767.e1. DOI: 10.1053/j.gastro.2009.07.069.
[27] [27] KANTHER M, SUN X L, MHLBAUER M, et al. Microbial colonization induces dynamic temporal and spatial patterns of NF-B activation in the zebrafish digestive tract[J]. Gastroenterology, 2011, 141(1): 197-207. DOI: 10.1053/j.gastro.2011.03.042.
[28] [28] THAKUR P C, DAVISON J M, STUCKENHOLZ C, et al. Dysregulated phosphatidylinositol signaling promotes endoplasmic-reticulum-stress-mediated intestinal mucosal injury and inflammation in zebrafish[J]. Dis Model Mech, 2014, 7(1): 93-106. DOI: 10.1242/dmm.012864.
[29] [29] VAN DER VAART M, VAN SOEST J J, SPAINK H P, et al. Functional analysis of a zebrafish myd88 mutant identifies key transcriptional components of the innate immune system[J]. Dis Model Mech, 2013, 6(3): 841-854. DOI: 10.1242/dmm.010843.
[30] [30] SANMARCO L M, CHAO C C, WANG Y C, et al. Identification of environmental factors that promote intestinal inflammation[J]. Nature, 2022, 611(7937): 801-809. DOI: 10.1038/s41586-022-05308-6.
[31] [31] DIAZ O E, SORINI C, MORALES R A, et al. Perfluoro-octanesulfonic acid modulates barrier function and systemic T-cell homeostasis during intestinal inflammation[J]. Dis Model Mech, 2021, 14(12): dmm049104. DOI: 10.1242/dmm.049104.
[32] [32] XIAO W, HU C Y, NI Y F, et al. 27-Hydroxycholesterol activates the GSK-3/-catenin signaling pathway resulting in intestinal fibrosis by inducing oxidative stress: effect of dietary interventions[J]. Inflamm Res, 2024, 73(2): 289-304. DOI: 10.1007/s00011-023-01835-8.
[33] [33] FLORES E, DUTTA S, BOSSERMAN R, et al. Colonization of larval zebrafish (Danio rerio) with adherent-invasiveEscherichia coliprevents recovery of the intestinal mucosa from drug-induced enterocolitis[J]. mSphere, 2023, 8(6): e0051223. DOI: 10.1128/msphere.00512-23.
[34] [34] RAMANAN D, BOWCUTT R, LEE S C, et al. Helminth infection promotes colonization resistanceviatype 2 immunity[J]. Science, 2016, 352(6285): 608-612. DOI: 10.1126/science.aaf3229.
[35] [35] HAARDER S, KANIA P W, HOLM T L, et al. Effect of ES products fromAnisakis(Nematoda: Anisakidae) on experimentally induced colitis in adult zebrafish[J]. Parasite Immunol, 2017, 39(10): e12456. DOI: 10.1111/pim.12456.
[36] [36] REN X X, LIU Q Y, ZHOU P R, et al. DHX9 maintains epithelial homeostasis by restraining R-loop-mediated genomic instability in intestinal stem cells[J]. Nat Commun, 2024, 15(1): 3080. DOI: 10.1038/s41467-024-47235-2.
[37] [37] HABJAN E, SCHOUTEN G K, SPEER A, et al. Diving into drug-screening: zebrafish embryos as anin vivoplatform for antimicrobial drug discovery and assessment[J]. FEMS Microbiol Rev, 2024, 48(3): fuae011. DOI: 10.1093/femsre/fuae011.
[38] [38] SILVA N V, CARREGOSA D, GONALVES C, et al. A dietary cholesterol-based intestinal inflammation assay for improving drug-discovery on inflammatory bowel diseases[J]. Front Cell Dev Biol, 2021, 9: 674749. DOI: 10.3389/fcell.2021.674749.
[39] [39] SHENG Y, LI H L, LIU M J, et al. A manganese-superoxide dismutase fromThermus thermophilusHB27 suppresses inflammatory responses and alleviates experimentally induced colitis[J]. Inflamm Bowel Dis, 2019, 25(10): 1644-1655. DOI: 10.1093/ibd/izz097.
[40] [40] MOUSAVI T, HASSANI S, BAEERI M, et al. Comparison of the safety and efficacy of fingolimod and tofacitinib in the zebrafish model of colitis[J]. Food Chem Toxicol, 2022, 170: 113509. DOI: 10.1016/j.fct.2022.113509.
[41] [41] JEFREMOW A, NEURATH M F. Novel small molecules in IBD: current state and future perspectives[J]. Cells, 2023, 12(13): 1730. DOI: 10.3390/cells12131730.
[42] [42] HUANG X D, AI F, JI C, et al. A rapid screening method of candidate probiotics for inflammatory bowel diseases and the anti-inflammatory effect of the selected strainBacillus smithiiXY1[J]. Front Microbiol, 2021, 12: 760385. DOI: 10.3389/fmicb.2021.760385.
[43] [43] NAG D, FARR D, RAYCHAUDHURI S, et al. An adult zebrafish model for adherent-invasiveEscherichia coliindicates protection from AIEC infection by probioticE.coliNissle[J]. iScience, 2022, 25(7): 104572. DOI: 10.1016/j.isci.2022.104572.
[44] [44] CHEN H J, LEI P Y, JI H, et al.Escherichia coliNissle 1917 ghosts alleviate inflammatory bowel disease in zebrafish[J]. Life Sci, 2023, 329: 121956. DOI: 10.1016/j.lfs.2023.121956.
[45] [45] CHEN M, LIU C, DAI M Z, et al.Bifidobacterium lactisBL-99 modulates intestinal inflammation and functions in zebrafish models[J]. PLoS One, 2022, 17(2): e0262942. DOI: 10.1371/journal.pone.0262942.
[46] [46] YU Y R, CHEN J, ZHANG X H, et al. Identification of anti-inflammatory compounds from Zhongjing formulae by knowledge mining and high-content screening in a zebrafish model of inflammatory bowel diseases[J]. Chin Med, 2021, 16(1): 42. DOI: 10.1186/s13020-021-00452-z.
[47] [47] JIA D S, TIAN X, CHEN Y T, et al. Preparation of enzymatic hydrolysates of mulberry leaf flavonoids and investigation into its treatment and mechanism for zebrafish inflammatory bowel disease[J]. Fish Shellfish Immunol, 2024, 154: 109960. DOI: 10.1016/j.fsi.2024.109960.
[48] [48] LI Y, LIU X J, SU S L, et al. Evaluation of anti-inflammatory and antioxidant effectsofChrysanthemumstem and leaf extract on zebrafish inflammatory bowel disease model[J]. Molecules, 2022, 27(7): 2114. DOI: 10.3390/molecules27072114.
Get Citation
Copy Citation Text
ZHAO Xin, WANG Chenxi, SHI Wenqing, LOU Yuefen. Advances in the Application of Zebrafish in the Research of Inflammatory Bowel Disease Mechanisms and Drug Development[J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 422
Category:
Received: Nov. 13, 2024
Accepted: Sep. 10, 2025
Published Online: Sep. 10, 2025
The Author Email: LOU Yuefen (louyuefen@tongji.edu.cn)