Journal of Innovative Optical Health Sciences, Volume. 17, Issue 6, 2450016(2024)

Multi-class classification of pathological myopia based on fundus photography

Jiaqing Zhao1、*, Guogang Cao1, Jiangnan He2、**, and Cuixia Dai1、***
Author Affiliations
  • 1Shanghai Institute of Technology, No. 100 Haiquan Road, Fengxian District, Shanghai, P. R. China
  • 2Shanghai Eye Diseases Prevention & Treatment Center, Shanghai Eye Hospital, School of Medicine, Tongji University, Shanghai 200331, P. R. China
  • show less
    References(26)

    [1] V. S. E. Jeganathan, S.-M. Saw, T.-Y. Wong. Ocular morbidity of pathological myopia. Myopia, 97-120(2010).

    [5] T. Sherman. Fundus photographs and other fundus imaging. Fundamentals of Ophthalmic Practice, 229-237(2023).

    [6] W. Zhang, X. Zhao, Y. Chen, J. Zhong, Z. Yi. DeepUWF: An automated ultrawide-field fundus screening system via deep learning. IEEE J. Biomed. Health Informatics, 25, 2988-2996(2021).

    [7] Y. Tang, Y. Xu. Diabetic retinopathy analysis based on retinal fundus photographs via deep learning. Advances in Pattern Recognition and Artificial Intelligence, 61-76(2021).

    [8] Z. Gao, J. Li, J. Guo, Y. Chen, Z. Yi, J. Zhong. Diagnosis of diabetic retinopathy using deep neural networks. IEEE Access, 7, 3360-3370(2019).

    [16] K. He, X. Zhang, S. Ren, J. Sun. Deep residual learning for image recognition. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 770-778(2016).

    [17] Y. Pan, J. Liu, Y. Cai, X. Yang, Z. Zhang, H. Long et al. Fundus image classification using Inception V3 and ResNet-50 for the early diagnostics of fundus diseases. Front. Physiol., 14, 1126780(2023).

    [18] N. Chea, Y. Nam. Classification of fundus images based on deep learning for detecting eye diseases. Comput., Mater. Continua, 67, 411-426(2021).

    [20] L. Pereira, Y. Taya, I. Kobayashi. Multi-layer random perturbation training for improving model generalization efficiently. Proc. Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, 303-310(2021).

    [21] Yu X., Xue Y., Zhang L., Wang L., Liu T., Zhu D.. Exploring the influence of information entropy change in learning systems(2023).

    [22] Y. Shao, S. C. Liew, D. Gündüz. Denoising noisy neural networks: A bayesian approach with compensation. IEEE Trans. Signal Process., 71, 2460-2474(2023).

    [23] Simonyan K., Zisserman A.. Very deep convolutional networks for large-scale image recognition(2014).

    [24] Dosovitskiy A., Beyer L., Kolesnikov A., Weissenborn D., Zhai X., Unterthiner T. et al. An image is worth 16×16 words: Transformers for image recognition at scale(2020).

    [25] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang et al. Swin transformer: Hierarchical vision transformer using shifted windows. Proc. IEEE/CVF Int. Conf. Computer Vision 2021, 10012-10022(2021).

    [26] M. Tan, Q. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. Int. Conf. Machine Learning: PMLR, 6105-6114(2019).

    Tools

    Get Citation

    Copy Citation Text

    Jiaqing Zhao, Guogang Cao, Jiangnan He, Cuixia Dai. Multi-class classification of pathological myopia based on fundus photography[J]. Journal of Innovative Optical Health Sciences, 2024, 17(6): 2450016

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Apr. 29, 2024

    Accepted: Jul. 7, 2024

    Published Online: Nov. 13, 2024

    The Author Email: Jiaqing Zhao (jqzhao9712@163.com), Jiangnan He (hejiangnan85@126.com), Cuixia Dai (sdadai7412@163.com)

    DOI:10.1142/S1793545824500160

    Topics