Laser & Optoelectronics Progress, Volume. 62, Issue 6, 0615013(2025)

Carbon Fiber Defect Detection Based on Terahertz Technology and YOLOv5s

Leijun Xu, Yafei Zhou, Jianfeng Chen, and Xue Bai*
Author Affiliations
  • School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu , China
  • show less
    References(21)

    [1] Chen G Y, Tao N R, Li M Q et al. Research progress of laser drilling technology for carbon fiber reinforced composites[J]. Acta Materiae Compositae Sinica, 39, 1395-1410(2022).

    [2] Fan W R, Lei J, Dong Y S et al. Damage detection of CFRP laminate structure based on four-probe method[J]. Chinese Journal of Scientific Instrument, 38, 961-968(2017).

    [3] Wang B, Li R. Development and application of CFRP in the field of national major infrastructure construction[J]. Science & Technology Review, 36, 64-72(2018).

    [8] Ju L, Weng B B, Niu X L et al. Ultrasonic detection based on diaphragm optical fiber fabry-perot sensor[J]. Laser & Optoelectronics Progress, 60, 1506002(2023).

    [9] Gu X, Zhan W D, Cui Z W et al. Infrared target detection method based on attention mechanism[J]. Laser & Optoelectronics Progress, 60, 1011002(2023).

    [12] Li M, Zhang C, Tong X L et al. Composite material impact location detection technology based on BP algorithm and FBG sensing[J]. Laser Technology, 46, 320-325(2022).

    [13] Deng G W, You H Q, Zhu Z S. Defect detection on aluminum profile surface based on KCC-YOLOv5[J]. Laser & Optoelectronics Progress, 61, 0412002(2024).

    Tools

    Get Citation

    Copy Citation Text

    Leijun Xu, Yafei Zhou, Jianfeng Chen, Xue Bai. Carbon Fiber Defect Detection Based on Terahertz Technology and YOLOv5s[J]. Laser & Optoelectronics Progress, 2025, 62(6): 0615013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: Jul. 12, 2024

    Accepted: Sep. 5, 2024

    Published Online: Mar. 6, 2025

    The Author Email: Bai Xue (baixue@ujs.edu.cn)

    DOI:10.3788/LOP241675

    CSTR:32186.14.LOP241675

    Topics