Chinese Journal of Lasers, Volume. 49, Issue 14, 1402204(2022)

Effect of Interlayer Cooling on Structure and Tensile Properties of TC17 Titanium Alloy Fabricated by Laser Additive Manufacturing

Bingsen Liu1,2, Shuquan Zhang1,2, Jikui Zhang1,2,3, Huaming Wang1,2, and Yanyan Zhu1,2,3、*
Author Affiliations
  • 1Research Institute for Frontier Science, Beihang University, Beijing 100191, China
  • 2National Engineering Laboratory of Additive Manufacturing for Large Metallic Components, Beihang University, Beijing 100191, China
  • 3Ningbo Institute of Technology, Beihang University, Ningbo 315800, Zhejiang, China
  • show less
    References(30)

    [1] Huang B Y, Li C G, Shi L K et al[M]. China materials engineering canon volume 4: non-ferrous materials engineering, 4, 620-630(2006).

    [2] Liu Q, Wang Y, Zheng H et al. Wire feeding based laser additive manufacturing TC17 titanium alloy[J]. Materials Technology, 31, 108-114(2016).

    [3] Abbott D H, Arcella F. Laser forming titanium components[J]. Advanced Materials & Processes, 153, 29-30(1998).

    [4] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    [5] Wang H M, Zhang S Q, Wang X M. Progress and challenges of laser direct manufacturing of large titanium structural components (invited paper)[J]. Chinese Journal of Lasers, 36, 3204-3209(2009).

    [6] Zhu Y Y, Liu D, Tian X J et al. Characterization of microstructure and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy[J]. Materials & Design, 56, 445-453(2014).

    [7] Mok S H, Bi G J, Folkes J et al. Deposition of Ti-6Al-4V using a high power diode laser and wire, Part II: investigation on the mechanical properties[J]. Surface and Coatings Technology, 202, 4613-4619(2008).

    [8] Qin L Y, Wu J B, Wang W et al. Microstructures and fatigue properties of Ti-6Al-2Mo-2Sn-2Zr-2Cr-2V titanium alloy fabricated using laser deposition manufacturing[J]. Chinese Journal of Lasers, 47, 1002008(2020).

    [9] Hou J Y, Li Z Y, Jiang H Z et al. Process and properties of Ti6Al4V manufactured using laser melting deposition with dimensionless processing diagram[J]. Chinese Journal of Lasers, 49, 0202013(2022).

    [10] Shan Q B, Liu C, Yao J et al. Effects of scanning strategy on the microstructure, properties, and residual stress of TC4 titanium alloy prepared by laser melting deposition[J]. Laser & Optoelectronics Progress, 58, 1114002(2021).

    [11] Thijs L, Verhaeghe F, Craeghs T et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 58, 3303-3312(2010).

    [12] Wu X H, Liang J, Mei J F et al. Microstructures of laser-deposited Ti-6Al-4V[J]. Materials & Design, 25, 137-144(2004).

    [13] Wang T, Zhu Y Y, Zhang S Q et al. Grain morphology evolution behavior of titanium alloy components during laser melting deposition additive manufacturing[J]. Journal of Alloys and Compounds, 632, 505-513(2015).

    [14] Liu C M, Wang H M, Tian X J et al. Microstructure and tensile properties of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J]. Materials Science and Engineering: A, 586, 323-329(2013).

    [15] Liu C M, Wang H M, Tian X J et al. Subtransus triplex heat treatment of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J]. Materials Science and Engineering: A, 590, 30-36(2014).

    [16] Zhang S Y, Zhang Q, Zheng M et al. Grain refinement and improved tensile properties of Ti5Al2Sn2Zr4Mo4Cr titanium alloy fabricated by laser solid forming[J]. Materials Science and Engineering: A, 800, 140388(2021).

    [17] Zhang G D, Xiong H P, Yu H et al. Microstructure evolution and mechanical properties of wire-feed electron beam additive manufactured Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy with different subtransus heat treatments[J]. Materials & Design, 195, 109063(2020).

    [18] DebRoy T, Mukherjee T, Milewski J O et al. Scientific, technological and economic issues in metal printing and their solutions[J]. Nature Materials, 18, 1026-1032(2019).

    [19] Zhang T L, Xu G, Shen Y T et al. Numerical simulation of thermal behavior of different interlayer idle time for MIG-based additive manufacturing[J]. Light Industry Machinery, 38, 37-42(2020).

    [20] Tang Y J, Zhang Y Z, Liu Y T. Numerical and experimental investigation of laser additive manufactured Ti2AlNb-based alloy[J]. Journal of Alloys and Compounds, 727, 196-204(2017).

    [21] Liu C M, Lu Y, Tian X J et al. Influence of continuous grain boundary α on ductility of laser melting deposited titanium alloys[J]. Materials Science and Engineering: A, 661, 145-151(2016).

    [22] Kelly S M, Kampe S L. Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: part I. Microstructural characterization[J]. Metallurgical and Materials Transactions A, 35, 1861-1867(2004).

    [23] Deng H, Chen L Q, Qiu W B et al. Microstructure and mechanical properties of as-deposited and heat treated Ti-5Al-5Mo-5V-3Cr-1Zr (Ti-55531) alloy fabricated by laser melting deposition[J]. Journal of Alloys and Compounds, 810, 151792(2019).

    [24] Lin X, Li Y M, Wang M et al. Columnar to equiaxed transition in alloy solidification[J]. Science in China (Series E), 33, 577-588(2003).

    [25] Bontha S, Klingbeil N W, Kobryn P A et al. Thermal process maps for predicting solidification microstructure in laser fabrication of thin-wall structures[J]. Journal of Materials Processing Technology, 178, 135-142(2006).

    [26] Wang J W, Chen J, Liu Y H et al. Research on microstructure of TC17 titanium alloy fabricated by laser solid forming[J]. Chinese Journal of Lasers, 37, 847-851(2010).

    [27] Huang C W, Zhao Y Q, Xin S W et al. Effect of microstructure on tensile properties of Ti-5Al-5Mo-5V-3Cr-1Zr alloy[J]. Journal of Alloys and Compounds, 693, 582-591(2017).

    [28] Lütjering G, Williams J C[M]. Beta alloys(2003).

    [29] Zhu Y Y, Chen B, Tang H B et al. Influence of heat treatments on microstructure and mechanical properties of laser additive manufacturing Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 28, 36-46(2018).

    [30] Bermingham M J, Kent D, Pace B et al. High strength heat-treatable β-titanium alloy for additive manufacturing[J]. Materials Science and Engineering: A, 791, 139646(2020).

    Tools

    Get Citation

    Copy Citation Text

    Bingsen Liu, Shuquan Zhang, Jikui Zhang, Huaming Wang, Yanyan Zhu. Effect of Interlayer Cooling on Structure and Tensile Properties of TC17 Titanium Alloy Fabricated by Laser Additive Manufacturing[J]. Chinese Journal of Lasers, 2022, 49(14): 1402204

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Dec. 24, 2021

    Accepted: Feb. 18, 2022

    Published Online: Jun. 14, 2022

    The Author Email: Zhu Yanyan (zhuyy@buaa.edu.cn)

    DOI:10.3788/CJL202249.1402204

    Topics