Chinese Journal of Lasers, Volume. 44, Issue 12, 1205003(2017)
Smoothing by Spectral Dispersion Technology Based on Bundle Multiple-Frequency Modulation
[1] [1] Kirkwood R K, Moody J D, Kline J, et al. A review of laser-plasma interaction physics of indirect-drive fusion[J]. Plasma Physics and Controlled Fusion, 2013, 55(10): 103001.
[2] [2] Kato Y, Mima K, Miyanaga N, et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression[J]. Physical Review Letters, 1984, 53(11): 1057-1060.
[3] [3] Lin Y, Kessler T J, Lawrence G N. Distributed phase plates for super-Gaussian focal-plane irradiance profiles[J]. Optics Letters, 1995, 20(7): 764-766.
[4] [4] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004, 11(2): 339-491.
[5] [5] Skupsky S, Short R W, Kessler T, et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light[J]. Journal of Applied Physics, 1989, 66(8): 3456-3462.
[6] [6] Laboratory for Laser Energetics, University of Rochester. Phase conversion using distributed polarization rotation[R]. LLE Review, 1990, 45: 1-12.
[7] [7] Dixit S N, Munro D, Murray J R, et al. Polarization smoothing on the National Ignition Facility[C]. Journal de Physique IV (Proceedings), 2006, 133(1): 717-720.
[8] [8] Haynam C A, Wegner P J, Auerbach J M, et al. National Ignition Facility laser performance status[J]. Applied Optics, 2007, 46(16): 3276-3303.
[9] [9] Spaeth M L, Manes K R, Bowers M, et al. National Ignition Facility laser system performance[J]. Fusion Science and Technology, 2016, 69(1): 366-394.
[10] [10] Walraet F, Riazuelo G, Bonnaud G. Propagation in a plasma of a laser beam smoothed by longitudinal spectral dispersion[J]. Physics of Plasmas, 2003, 10(3): 811-819.
[11] [11] Zhang R, Jia H T, Tian X C, et al. Research of beam conditioning technologies using continuous phase plate, Multi-FM smoothing by spectral dispersion and polarization smoothing[J]. Optics and Lasers in Engineering, 2016, 85: 38-47.
[12] [12] Kruschwitz B E, Kelly J H, Dorrer C, et al. Commissioning of a multiple-frequency modulation smoothing by spectral dispersion demonstration system on OMEGA EP[C]. SPIE, 2013, 8602: 86020E.
[13] [13] Hohenberger M, Shvydky A, Marozas J A, et al. Optical smoothing of laser imprinting in planar-target experiments on OMEGA EP using multi-FM 1-D smoothing by spectral dispersion[J]. Physics of Plasmas, 2016, 23(9): 092702.
[14] [14] Néauport J, Ribeyre X, Daurios J, et al. Design and optical characterization of a large continuous phase plate for Laser Integration Line and laser Megajoule facilities[J]. Applied optics, 2003, 42(13): 2377-2382.
[15] [15] Marozas J A, Collins T J B, Zuegel J D, et al. Continuous distributed phase-plate advances for high-energy laser systems[J]. Journal of Physics, 2016, 717(1): 012107.
[16] [16] Wen Shenglin, Yan Hao, Zhang Yuanhang, et al. Calculation and experiment of the focal spot caused by continuous phase plate with incident wavefront distortion[J]. Acta Optica Sinica, 2014, 34(3): 0314001.
[17] [17] Wen Shenglin, Tang Caixue, Zhang Yuanhang, et al. Effects of least spatial period on the fabrication and performance of continuous phase plate[J]. Chinese J Lasers, 2015, 42(9): 0908001.
[18] [18] Laboratory for Laser Energetics, University of Rochester. Two-dimensional SSD on OMEGA[R]. LLE Review, 1996, 69: 1-10.
[19] [19] Miyaji G, Miyanaga N, Urushihara S, et al. Three-directional spectral dispersion for smoothing of a laser irradiance profile[J]. Optics Letters, 2002, 27(9): 725-727.
[21] [21] Li Ping, Su Jingqin, Ma Chi, et al. Effect of smoothing by spectral dispersion on the spatial spectrum of focal spot[J]. Acta Physica Sinica, 2009, 58(9): 6210-6215.
[22] [22] Zhong Zheqiang, Hou Pengcheng, Zhang Bin. A novel radial beam smoothing scheme based on optical Kerr effect[J]. Acta Physica Sinica, 2016, 65(9): 094207.
[24] [24] Wen Ping, Li Zelong, Zhong Zheqiang, et al. Parameters optimization for multi-color multi-central frequency smoothing by spectral dispersion[J]. Acta Optica Sinica, 2015, 35(6): 0614001.
[25] [25] Spaeth M L, Manes K R, Kalantar D H, et al. Description of the NIF laser[J]. Fusion Science and Technology, 2016, 69(1): 25-145.
[26] [26] Temporal M, Canaud B, Garbett W J, et al. Numerical analysis of the direct drive illumination uniformity for the Laser MegaJoule facility[J]. Physics of Plasmas, 2014, 21(1): 012710.
[27] [27] Temporal M, Canaud B, le Garrec B J. Irradiation uniformity and zooming performances for a capsule directly driven by a 32×9 laser beams configuration[J]. Physics of Plasmas, 2010, 17(2): 022701.
[28] [28] Li Fuquan, Han Wei, Wang Fang, et al. Research status of final optics assembly in high-power laser facility[J]. Laser & Optoelectronics Progress, 2013, 50(6): 060002.
[29] [29] Baisden P A, Atherton L J, Hawley R A, et al. Large optics for the National Ignition Facility[J]. Fusion Science and Technology, 2016, 69(1): 295-351.
Get Citation
Copy Citation Text
Zheng Tianran, Zhang Ying, Geng Yuanchao, Huang Wanqing, Liu Lanqin, Sun Xibo, Wang Wenyi, Li Ping, Zhang Rui, Su Jingqin. Smoothing by Spectral Dispersion Technology Based on Bundle Multiple-Frequency Modulation[J]. Chinese Journal of Lasers, 2017, 44(12): 1205003
Category: beam transmission and control
Received: Jul. 14, 2017
Accepted: --
Published Online: Dec. 11, 2017
The Author Email: Ying Zhang (zhangying@tsinghua.org.cn)