Laser & Optoelectronics Progress, Volume. 61, Issue 21, 2101001(2024)

Method for Generating Atmospheric Turbulence Phase Screen Based on Deep Convolutional Generative-Adversarial Networks

Zeyang Wang1,2, Yue Zhu3, and Yan An1,2、*
Author Affiliations
  • 1School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin , China
  • 2Institute of Space Optoelectronics Technology, Changchun University of Science and Technology, Changchun 130022, Jilin , China
  • 3College of Exploration and Geomatics Engineering, Changchun Institute of Technology, Changchun 130021, Jilin , China
  • show less
    Figures & Tables(15)
    Random phase screens for each turbulence intensity. (a) (b) Cn2=2.0×10-20; (c) (d) Cn2=2.0×10-15; (e) (f) Cn2=2.0×10-13
    Phase screen images when atmospheric turbulence intensity of 2.0×10-20. (a) Plane image; (b) 3D image
    Network structure diagram
    Generator structure diagram
    Discriminator structure diagram
    Loss function of generator and discriminator during training process
    Random atmospheric turbulence phase screen images corresponding to training once, 15000 times, and 33000 times
    Structure function curve of atmospheric turbulence random phase screen
    Atmospheric turbulence phase screen images. (a) Phase screen plane image and (b) 3D image generated by DCGAN model; (c) phase screen plane image and (d) 3D image generated by numerical simulation method
    RMSE variation of DCGAN corresponding model prediction values
    Standard deviation line graph of grayscale value of turbulent phase screen at different training times. (a) 1 epoch; (b) 200 epochs; (c) 400 epochs
    • Table 1. Specific parameters of random phase screen

      View table

      Table 1. Specific parameters of random phase screen

      ParameterSimulation value
      Number of grid elements256
      Length z /m1000
      Grid spacingAbout 0.0023
      Waist radius ω0 /cm2
      Width of phase screen L /m0.6
      Number of phase screens1
      Cn2 /m-2/31.0×10-20-1.0×10-13
    • Table 2. Specific parameters of generator

      View table

      Table 2. Specific parameters of generator

      GeneratorConvolutional kernel size and strideOutput size
      Input100×1
      Reshap and project4×4×1024
      ConvT2d4×4×28×8×512
      BatchNormal8×8×512
      ReLU8×8×512
      ConvT2d4×4×216×16×256
      BatchNormal16×16×256
      ReLU16×16×256
      ConvT2d4×4×232×32×128
      BatchNormal32×32×128
      ReLU32×32×128
      ConvT2d4×4×264×64×3
      BatchNormal64×64×3
      Tanh64×64×3
    • Table 3. Specific parameters of discriminator

      View table

      Table 3. Specific parameters of discriminator

      DiscriminatorConvolutional kernel size and strideOutput size
      Input64×64×3
      ConvT2d4×4×232×32×128
      BatchNormal32×32×128
      LeakyReLU32×32×128
      ConvT2d4×4×216×16×256
      BatchNormal16×16×256
      LeakyReLU16×16×256
      ConvT2d4×4×28×8×512
      BatchNormal8×8×512
      LeakyReLU8×8×512
      ConvT2d4×4×24×4×1024
      BatchNormal4×4×1024
      LeakyReLU4×4×1024
      FC(4×4×1024,1)1×1
      Sigmoid1×1
    • Table 4. Calculation time for generating atmospheric turbulence phase screens

      View table

      Table 4. Calculation time for generating atmospheric turbulence phase screens

      MethodCalculation time /s
      Number of 1Number of 50Number of 100Number of 250Number of 500Number of 750Number of 1000Number of 2000
      Numerical simulation0.09124.64515.986416.384829.897845.575363.1894126.3965
      DCGAN0.25660.75801.87192.830112.157012.502317.568239.4204
    Tools

    Get Citation

    Copy Citation Text

    Zeyang Wang, Yue Zhu, Yan An. Method for Generating Atmospheric Turbulence Phase Screen Based on Deep Convolutional Generative-Adversarial Networks[J]. Laser & Optoelectronics Progress, 2024, 61(21): 2101001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Dec. 24, 2023

    Accepted: Feb. 27, 2024

    Published Online: Nov. 18, 2024

    The Author Email: Yan An (anyan_7@126.com)

    DOI:10.3788/LOP232738

    CSTR:32186.14.LOP232738

    Topics