Optoelectronic Technology, Volume. 43, Issue 2, 116(2023)
Research Status and Trends of Light Field Display Technology
[1] Treichler D G. Are you missing the boat in training aids?[J]. Film and Audio-Visual Communication, 48, 14-16(1967).
[2] Danesh Panah M, Javidi B, Watson E A. Three dimensional imaging with randomly distributed sensors[J]. Opt. Express, 16, 6368-6377(2008).
[3] Yi F, Lee J, Moon I. Three-dimensional integral imaging by using unknown sensor array position calibration with a closed-form solution[J]. Optical Engineering, 55(2016).
[4] Arai J, Kawakita M, Yamashita T et al. Integral three-dimensional television with video system using pixel-offset method[J]. Opt. Express, 21, 3474-3485(2013).
[5] Levoy M, Zhang Z, McDowall I. Recording and controlling the 4D light field in a microscope using microlens arrays[J]. Journal of Microscopy, 235, 144-162(2009).
[6] Wang W, Li S, Liu P et al. Improved depth of field of the composite micro-lens arrays by electrically tunable focal lengths in the light field imaging system[J]. Optics & Laser Technology, 148, 107748(2022).
[7] Ives F E. Parallax stereogram and process of making same[P]. USA.
[8] Lippmann G. La photographie intégrale[J]. Comptes-Rendus, 146, 446-451(1908).
[9] Gershun A. The light field[J]. Journal of Mathematics and Physics, 18, 51-151(1939).
[10] Adelson E H. Single lens stereo with a plenoptic camera[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 99-106(1992).
[11] Levoy M, Hanrahan P. Light field rendering[C], 31-42(1996).
[12] Gortler S J, Grzeszczuk R, Szeliski R et al. The lumigraph[C], 43-54(1996).
[13] Geng J. Three-dimensional display technologies[J]. Adv. Opt. Photon., 5, 456-535(2013).
[14] Xia X, Liu X, Li H et al. A 360-degree floating 3D display based on light field regeneration[J]. Optics Express, 21, 11237-11247(2013).
[15] Su C, Xia X, Li H et al. P-78: An interactive 360° floating 3D display based on gesture recognition[J]. SID Symposium Digest of Technical Papers, 45, 1278-1281(2014).
[16] Ma X M, Xing Y, Zheng J C et al. A real-time interactive rendering method for 360° tabletop integral imaging 3D display[J]. Journal of the Society for Information Display, 29, 679-688(2021).
[17] Fan F C, Choi S, Jiang C C. Demonstration of full-parallax three-dimensional holographic display on commercial 4K flat-panel displayer[J]. Chinese Optics Letters, 14(2016).
[18] Yang S, Sang X, Yu X et al. 162-inch 3D light field display based on aspheric lens array and holographic functional screen[J]. Opt. Express, 26, 33013-33021(2018).
[19] Wang J, Suenaga H, Liao H et al. Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation[J]. Computerized Medical Imaging and Graphics, 40, 147-159(2015).
[20] Jones A V, Nagano K, Liu J et al. Interpolating vertical parallax for an autostereoscopic three-dimensional projector array[J]. Journal of Electronic Imaging, 23(2014).
[21] Jones A, Unger J, Nagano K et al. An automultiscopic projector array for interactive digital humans[C], 1-1(2015).
[22] Yoshida S. fVisiOn: 360-degree viewable glasses-free tabletop 3D display composed of conical screen and modular projector arrays[J]. Opt. Express, 24, 13194-13203(2016).
[23] Jang C, Bang K, Chae M et al. Waveguide holography: Towards true 3D holographic glasses[J]. arXiv preprint, 2022(02784).
[24] Park J H, Hong K, Lee B. Recent progress in three-dimensional information processing based on integral imaging[J]. Applied Optics, 48, 77-94(2009).
[25] Chen C W, Cho M, Huang Y P et al. Improved viewing zones for projection type integral imaging 3D display using adaptive liquid crystal prism array[J]. Journal of Display Technology, 10, 198-203(2014).
[26] Chen Y, Wang X, Zhang J et al. Resolution improvement of integral imaging based on time multiplexing sub-pixel coding method on common display panel[J]. Optics Express, 22, 17897-17907(2014).
[27] Choi H, Kim Y, Park J H et al. Improved analysis on the viewing angle of integral imaging[J]. Appl. Opt., 44, 2311-2317(2005).
[28] Park J H, Baasantseren G, Kim N et al. View image generation in perspective and orthographic projection geometry based on integral imaging[J]. Opt. Express, 16, 8800-8813(2008).
[29] Jung J H, Kim Y, Kim Y et al. Integral imaging system using an electroluminescent film backlight for three-dimensional-two-dimensional convertibility and a curved structure[J]. Appl. Opt., 48, 998-1007(2009).
[30] Kim J, Jung J H, Jang C et al. Real-time capturing and 3D visualization method based on integral imaging[J]. Opt. Express, 21, 18742-18753(2013).
[31] Yeom J, Jeong J, Jang C et al. Three-dimensional/two-dimensional convertible projection screen using see-through integral imaging based on holographic optical element[J]. Appl. Opt., 54, 8856-8862(2015).
[32] Lee S, Jang C, Cho J et al. Viewing angle enhancement of an integral imaging display using Bragg mismatched reconstruction of holographic optical elements[J]. Appl. Opt., 55, A95-A103(2016).
[33] Jo Y, Bang K, Yoo D et al. Ultrahigh-definition volumetric light field projection[J]. Opt. Lett., 46, 4212-4215(2021).
[34] Zhang N, Huang T, Meng Y et al. 35.1: Tabletop three-dimensional floating autostereoscopic display system with 360-degree continuous visualization[J]. SID Symposium Digest of Technical Papers, 52, 462-467(2021).
[35] Zhou X, Peng Y, Peng R et al. Fabrication of large-scale microlens arrays based on screen printing for integral imaging 3D display[J]. ACS Applied Materials & Interfaces, 8, 24248-24255(2016).
[36] Wang W, Chen G, Weng Y et al. Large-scale microlens arrays on flexible substrate with improved numerical aperture for curved integral imaging 3D display[J]. Scientific Reports, 10, 11741(2020).
[37] Jones A, Mc Dowall I, Yamada H et al. Rendering for an interactive 360° light field display[J]. ACM, 26, 40-10(2007).
[38] Jones A, Lang M, Fyffe G et al. Achieving eye contact in a one-to-many 3D video teleconferencing system[C](2009).
[39] Takaki Y, Nakamura J. Generation of 360-degree color three-dimensional images using a small array of high-speed projectors to provide multiple vertical viewpoints[J]. Optics Express, 22, 8779-8789(2014).
[40] Su C, Zhong Q, Xu L et al. 24.2: Real‐time rendering 360° floating light‐field 3D display[J]. Sid Symposium Digest of Technical Papers, 46, 346-349(2015).
[41] Su C, Zhou X, Li H et al. 19-2: Strategies of grayscale enhancement for scanning light field display[J]. SID Symposium Digest of Technical Papers, 47, 223-226(2016).
[42] Tian M, Ni L, Xu L et al. Multi-face real-time tracking based on dual panoramic camera for full-parallax light-field display[J]. Optics Communications, 442, 19-26(2019).
[43] Agocs T, Balogh T, Forgacs T et al. A large scale interactive holographic display[C]. VA, 311-311(2006).
[44] Lee J H, Park J, Nam D et al. Color and brightness uniformity compensation of a multi-projection 3D display[C](2015).
[45] Yu H, Yan X, Jiang X et al. Research summary on light field display technology based on projection[J]. Journal of Physics: Conference Series, 1682(2020).
[46] Balogh T, Forgács T, Agocs T et al. A scalable hardware and software system for the holographic display of interactive graphics applications[C], 109-112(2005).
[47] Balogh T. The HoloVizio system[J]. SPIE-IS&T, 6055, 60550(2006).
[48] Iglesias Guitián J A, Gobbetti E, Marton F. View-dependent exploration of massive volumetric models on large-scale light field displays[J]. The Visual Computer, 26, 1037-1047(2010).
[49] Kovács P T, Boev A, Bregović R et al. Quality measurements of 3D light-field displays[C], 1-6(2014).
[50] Lee J H, Park J, Nam D et al. Optimal projector configuration design for 300-M pixel multi-projection 3D display[J]. Opt. Express, 21, 26820-26835(2013).
[51] Yoshida S. Virtual multiplication of light sources for a 360°-viewable tabletop 3D display[J]. Opt. Express, 28, 32517-32528(2020).
[52] Sang X, Fan F C, Jiang C C et al. Demonstration of a large-size real-time full-color three-dimensional display[J]. Opt. Lett., 34, 3803-3805(2009).
[53] Peng Y Fan, Li H Feng, Zhong Q et al. Large-sized light field three-dimensional display using multi-projectors and directional diffuser[J]. Optical Engineering, 52(2013).
[54] Zhong Q, Peng Y, Li H et al. Multiview and light-field reconstruction algorithms for 360° multiple-projector-type 3D display[J]. Appl. Opt., 52, 4419-4425(2013).
[55] Ni L, Li Z, Li H et al. 7-3: A large-scale multi-projection light-field display based on multi-view sampling calibration[J]. SID Symposium Digest of Technical Papers, 49, 68-71(2018).
[56] Wang P, Sang X, Yu X et al. A full-parallax tabletop three dimensional light-field display with high viewpoint density and large viewing angle based on space-multiplexed voxel screen[J]. Optics Communications, 488, 126757(2021).
[57] Lanman D, Wetzstein G, Hirsch M et al. Polarization fields: Dynamic light field display using multi-layer LCDs[J]. ACM, 30, 1-10(2011).
[58] Wetzstein G, Lanman D, Hirsch M et al. Compressive light field displays[J]. IEEE Computer Graphics & Applications, 32, 6-11(2012).
[59] Gordon, Wetzstein, Douglas, et al. Tensor displays: Compressive light field synthesis using multilayer displays with directional backlighting[J]. ACM Transactions on Graphics (TOG) - SIGGRAPH 2012 Conference Proceedings, 31, 1-11(2012).
[60] Fattal D, Peng Z, Tran T et al. A multi-directional backlight for a wide-angle, glasses-free three-dimensional display[J]. Nature, 495, 348-351(2013).
[61] Wan W, Qiao W, Huang W et al. Efficient fabrication method of nano-grating for 3D holographic display with full parallax views[J]. Opt. Express, 24, 6203-6212(2016).
[62] Shi J, Hua J, Zhou F et al. Augmented reality vector light field display with large viewing distance based on pixelated multilevel blazed gratings[J]. Photonics, 8, 1-8(2021).
[63] Hua J, Hua E, Zhou F et al. Foveated glasses-free 3D display with ultrawide field of view via a large-scale 2D-metagrating complex[J]. Light: Science & Applications, 10, 213(2021).
[64] Zhou F, Zhou F, Chen Y et al. Vector light field display based on an intertwined flat lens with large depth of focus[J]. Optica, 9, 288-294(2022).
[65] Song W, Wang Y, Cheng D et al. Light field head-mounted display with correct focus cue using micro structure array[J]. Chinese Optics Letters, 12(2014).
[66] Xu C, Cheng D, Peng H et al. Wearable optical see-through head-mounted display capable of adjusting virtual image depth[J]. Chinese Optics Letters, 12(2014).
[67] Yao C, Cheng D, Yang T et al. Design of an optical see-through light-field near-eye display using a discrete lenslet array[J]. Opt. Express, 26, 18292-18301(2018).
[68] Cheng D, Wang Y, Xu C et al. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics[J]. Opt. Express, 22, 20705-20719(2014).
[69] Cheng D, Wang Y, Hua H et al. Design of a wide-angle, lightweight head-mounted display using free-form optics tiling[J]. Opt. Lett., 36, 2098-2100(2011).
[70] Song W, Cheng D, Deng Z et al. Design and assessment of a wide FOV and high-resolution optical tiled head-mounted display[J]. Appl. Opt., 54, E15-E22(2015).
[71] Song W, Cheng Q, Surman P et al. Design of a light-field near-eye display using random pinholes[J]. Opt. Express, 27, 23763-23774(2019).
[72] Han J, Song W, Liu Y et al. 5.2: Design of simulation tools for light-field near-eye displays[J]. SID Symposium Digest of Technical Papers, 50, 50-51(2019).
[73] Yao C, Wang Y, Lin J et al. Retinal projection head-mounted display[J]. Frontiers of Optoelectronics in China, 10, 1-8(2017).
[74] Zhang Q, Piao Y, Ma S et al. Design, analysis and optimization of a waveguide-type near-eye display using a pin-mirror array and a concaved reflector[J]. Opt. Express, 30, 33208-33221(2022).
[75] Zhang Q, Song W, Hu X et al. Design of a near-eye display measurement system using an anthropomorphic vision imaging method[J]. Opt. Express, 29, 13204-13218(2021).
[76] Gu L, Cheng D, Wang Q et al. Design of a uniform-illumination two-dimensional waveguide head-up display with thin plate compensator[J]. Opt. Express, 27, 12692-12709(2019).
[77] Zhang Z, Li Y, Guo J et al. Task-driven latent active correction for physics-inspired input method in near-field mixed reality applications[J]. Journal of the Society for Information Display, 26, 496-509(2018).
[78] Wang Q, Cheng D, Hou Q et al. Design of an ultra-thin, wide-angle, stray-light-free near-eye display with a dual-layer geometrical waveguide[J]. Opt. Express, 28, 35376-35394(2020).
[80] Gao X, Sang X, Yu X et al. 360° light field 3D display system based on a triplet lenses array and holographic functional screen[J]. Chinese Optics Letters, 15, 121201(2017).
[81] Yu X, Sang X, Gao X et al. Dynamic three-dimensional light-field display with large viewing angle based on compound lenticular lens array and multi-projectors[J]. Opt. Express, 27, 16024-16031(2019).
[82] Du J, Sang X, Yu X et al. Large viewing angle floating three-dimensional light field display based on the spatial data reconstruction (SDR) algorithm[J]. Optics Communications, 475, 126229(2020).
[83] Gao X, Yu X, Sang X et al. Improvement of a floating 3D light field display based on a telecentric retroreflector and an optimized 3D image source[J]. Opt. Express, 29, 40125-40145(2021).
Get Citation
Copy Citation Text
Jiaxin KANG, Wenwen WANG, Yuyan PENG, Jiazhen ZHANG, Xiongtu ZHOU, Qun YAN, Tailiang GUO, Yongai ZHANG. Research Status and Trends of Light Field Display Technology[J]. Optoelectronic Technology, 2023, 43(2): 116
Category:
Received: Dec. 14, 2022
Accepted: --
Published Online: Aug. 31, 2023
The Author Email: