Optoelectronic Technology, Volume. 43, Issue 2, 116(2023)

Research Status and Trends of Light Field Display Technology

Jiaxin KANG1, Wenwen WANG1, Yuyan PENG1, Jiazhen ZHANG1, Xiongtu ZHOU1,2, Qun YAN1,2, Tailiang GUO1,2, and Yongai ZHANG1,2
Author Affiliations
  • 1College of Physics and Information Engineering,Fuzhou University, Fuzhou 35008,CHN
  • 2Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108,CHN
  • show less
    References(82)

    [1] Treichler D G. Are you missing the boat in training aids?[J]. Film and Audio-Visual Communication, 48, 14-16(1967).

    [2] Danesh Panah M, Javidi B, Watson E A. Three dimensional imaging with randomly distributed sensors[J]. Opt. Express, 16, 6368-6377(2008).

    [3] Yi F, Lee J, Moon I. Three-dimensional integral imaging by using unknown sensor array position calibration with a closed-form solution[J]. Optical Engineering, 55(2016).

    [4] Arai J, Kawakita M, Yamashita T et al. Integral three-dimensional television with video system using pixel-offset method[J]. Opt. Express, 21, 3474-3485(2013).

    [5] Levoy M, Zhang Z, McDowall I. Recording and controlling the 4D light field in a microscope using microlens arrays[J]. Journal of Microscopy, 235, 144-162(2009).

    [6] Wang W, Li S, Liu P et al. Improved depth of field of the composite micro-lens arrays by electrically tunable focal lengths in the light field imaging system[J]. Optics & Laser Technology, 148, 107748(2022).

    [7] Ives F E. Parallax stereogram and process of making same[P]. USA.

    [8] Lippmann G. La photographie intégrale[J]. Comptes-Rendus, 146, 446-451(1908).

    [9] Gershun A. The light field[J]. Journal of Mathematics and Physics, 18, 51-151(1939).

    [10] Adelson E H. Single lens stereo with a plenoptic camera[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 99-106(1992).

    [11] Levoy M, Hanrahan P. Light field rendering[C], 31-42(1996).

    [12] Gortler S J, Grzeszczuk R, Szeliski R et al. The lumigraph[C], 43-54(1996).

    [13] Geng J. Three-dimensional display technologies[J]. Adv. Opt. Photon., 5, 456-535(2013).

    [14] Xia X, Liu X, Li H et al. A 360-degree floating 3D display based on light field regeneration[J]. Optics Express, 21, 11237-11247(2013).

    [15] Su C, Xia X, Li H et al. P-78: An interactive 360° floating 3D display based on gesture recognition[J]. SID Symposium Digest of Technical Papers, 45, 1278-1281(2014).

    [16] Ma X M, Xing Y, Zheng J C et al. A real-time interactive rendering method for 360° tabletop integral imaging 3D display[J]. Journal of the Society for Information Display, 29, 679-688(2021).

    [17] Fan F C, Choi S, Jiang C C. Demonstration of full-parallax three-dimensional holographic display on commercial 4K flat-panel displayer[J]. Chinese Optics Letters, 14(2016).

    [18] Yang S, Sang X, Yu X et al. 162-inch 3D light field display based on aspheric lens array and holographic functional screen[J]. Opt. Express, 26, 33013-33021(2018).

    [19] Wang J, Suenaga H, Liao H et al. Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation[J]. Computerized Medical Imaging and Graphics, 40, 147-159(2015).

    [20] Jones A V, Nagano K, Liu J et al. Interpolating vertical parallax for an autostereoscopic three-dimensional projector array[J]. Journal of Electronic Imaging, 23(2014).

    [21] Jones A, Unger J, Nagano K et al. An automultiscopic projector array for interactive digital humans[C], 1-1(2015).

    [22] Yoshida S. fVisiOn: 360-degree viewable glasses-free tabletop 3D display composed of conical screen and modular projector arrays[J]. Opt. Express, 24, 13194-13203(2016).

    [23] Jang C, Bang K, Chae M et al. Waveguide holography: Towards true 3D holographic glasses[J]. arXiv preprint, 2022(02784).

    [24] Park J H, Hong K, Lee B. Recent progress in three-dimensional information processing based on integral imaging[J]. Applied Optics, 48, 77-94(2009).

    [25] Chen C W, Cho M, Huang Y P et al. Improved viewing zones for projection type integral imaging 3D display using adaptive liquid crystal prism array[J]. Journal of Display Technology, 10, 198-203(2014).

    [26] Chen Y, Wang X, Zhang J et al. Resolution improvement of integral imaging based on time multiplexing sub-pixel coding method on common display panel[J]. Optics Express, 22, 17897-17907(2014).

    [27] Choi H, Kim Y, Park J H et al. Improved analysis on the viewing angle of integral imaging[J]. Appl. Opt., 44, 2311-2317(2005).

    [28] Park J H, Baasantseren G, Kim N et al. View image generation in perspective and orthographic projection geometry based on integral imaging[J]. Opt. Express, 16, 8800-8813(2008).

    [29] Jung J H, Kim Y, Kim Y et al. Integral imaging system using an electroluminescent film backlight for three-dimensional-two-dimensional convertibility and a curved structure[J]. Appl. Opt., 48, 998-1007(2009).

    [30] Kim J, Jung J H, Jang C et al. Real-time capturing and 3D visualization method based on integral imaging[J]. Opt. Express, 21, 18742-18753(2013).

    [31] Yeom J, Jeong J, Jang C et al. Three-dimensional/two-dimensional convertible projection screen using see-through integral imaging based on holographic optical element[J]. Appl. Opt., 54, 8856-8862(2015).

    [32] Lee S, Jang C, Cho J et al. Viewing angle enhancement of an integral imaging display using Bragg mismatched reconstruction of holographic optical elements[J]. Appl. Opt., 55, A95-A103(2016).

    [33] Jo Y, Bang K, Yoo D et al. Ultrahigh-definition volumetric light field projection[J]. Opt. Lett., 46, 4212-4215(2021).

    [34] Zhang N, Huang T, Meng Y et al. 35.1: Tabletop three-dimensional floating autostereoscopic display system with 360-degree continuous visualization[J]. SID Symposium Digest of Technical Papers, 52, 462-467(2021).

    [35] Zhou X, Peng Y, Peng R et al. Fabrication of large-scale microlens arrays based on screen printing for integral imaging 3D display[J]. ACS Applied Materials & Interfaces, 8, 24248-24255(2016).

    [36] Wang W, Chen G, Weng Y et al. Large-scale microlens arrays on flexible substrate with improved numerical aperture for curved integral imaging 3D display[J]. Scientific Reports, 10, 11741(2020).

    [37] Jones A, Mc Dowall I, Yamada H et al. Rendering for an interactive 360° light field display[J]. ACM, 26, 40-10(2007).

    [38] Jones A, Lang M, Fyffe G et al. Achieving eye contact in a one-to-many 3D video teleconferencing system[C](2009).

    [39] Takaki Y, Nakamura J. Generation of 360-degree color three-dimensional images using a small array of high-speed projectors to provide multiple vertical viewpoints[J]. Optics Express, 22, 8779-8789(2014).

    [40] Su C, Zhong Q, Xu L et al. 24.2: Real‐time rendering 360° floating light‐field 3D display[J]. Sid Symposium Digest of Technical Papers, 46, 346-349(2015).

    [41] Su C, Zhou X, Li H et al. 19-2: Strategies of grayscale enhancement for scanning light field display[J]. SID Symposium Digest of Technical Papers, 47, 223-226(2016).

    [42] Tian M, Ni L, Xu L et al. Multi-face real-time tracking based on dual panoramic camera for full-parallax light-field display[J]. Optics Communications, 442, 19-26(2019).

    [43] Agocs T, Balogh T, Forgacs T et al. A large scale interactive holographic display[C]. VA, 311-311(2006).

    [44] Lee J H, Park J, Nam D et al. Color and brightness uniformity compensation of a multi-projection 3D display[C](2015).

    [45] Yu H, Yan X, Jiang X et al. Research summary on light field display technology based on projection[J]. Journal of Physics: Conference Series, 1682(2020).

    [46] Balogh T, Forgács T, Agocs T et al. A scalable hardware and software system for the holographic display of interactive graphics applications[C], 109-112(2005).

    [47] Balogh T. The HoloVizio system[J]. SPIE-IS&T, 6055, 60550(2006).

    [48] Iglesias Guitián J A, Gobbetti E, Marton F. View-dependent exploration of massive volumetric models on large-scale light field displays[J]. The Visual Computer, 26, 1037-1047(2010).

    [49] Kovács P T, Boev A, Bregović R et al. Quality measurements of 3D light-field displays[C], 1-6(2014).

    [50] Lee J H, Park J, Nam D et al. Optimal projector configuration design for 300-M pixel multi-projection 3D display[J]. Opt. Express, 21, 26820-26835(2013).

    [51] Yoshida S. Virtual multiplication of light sources for a 360°-viewable tabletop 3D display[J]. Opt. Express, 28, 32517-32528(2020).

    [52] Sang X, Fan F C, Jiang C C et al. Demonstration of a large-size real-time full-color three-dimensional display[J]. Opt. Lett., 34, 3803-3805(2009).

    [53] Peng Y Fan, Li H Feng, Zhong Q et al. Large-sized light field three-dimensional display using multi-projectors and directional diffuser[J]. Optical Engineering, 52(2013).

    [54] Zhong Q, Peng Y, Li H et al. Multiview and light-field reconstruction algorithms for 360° multiple-projector-type 3D display[J]. Appl. Opt., 52, 4419-4425(2013).

    [55] Ni L, Li Z, Li H et al. 7-3: A large-scale multi-projection light-field display based on multi-view sampling calibration[J]. SID Symposium Digest of Technical Papers, 49, 68-71(2018).

    [56] Wang P, Sang X, Yu X et al. A full-parallax tabletop three dimensional light-field display with high viewpoint density and large viewing angle based on space-multiplexed voxel screen[J]. Optics Communications, 488, 126757(2021).

    [57] Lanman D, Wetzstein G, Hirsch M et al. Polarization fields: Dynamic light field display using multi-layer LCDs[J]. ACM, 30, 1-10(2011).

    [58] Wetzstein G, Lanman D, Hirsch M et al. Compressive light field displays[J]. IEEE Computer Graphics & Applications, 32, 6-11(2012).

    [59] Gordon, Wetzstein, Douglas, et al. Tensor displays: Compressive light field synthesis using multilayer displays with directional backlighting[J]. ACM Transactions on Graphics (TOG) - SIGGRAPH 2012 Conference Proceedings, 31, 1-11(2012).

    [60] Fattal D, Peng Z, Tran T et al. A multi-directional backlight for a wide-angle, glasses-free three-dimensional display[J]. Nature, 495, 348-351(2013).

    [61] Wan W, Qiao W, Huang W et al. Efficient fabrication method of nano-grating for 3D holographic display with full parallax views[J]. Opt. Express, 24, 6203-6212(2016).

    [62] Shi J, Hua J, Zhou F et al. Augmented reality vector light field display with large viewing distance based on pixelated multilevel blazed gratings[J]. Photonics, 8, 1-8(2021).

    [63] Hua J, Hua E, Zhou F et al. Foveated glasses-free 3D display with ultrawide field of view via a large-scale 2D-metagrating complex[J]. Light: Science & Applications, 10, 213(2021).

    [64] Zhou F, Zhou F, Chen Y et al. Vector light field display based on an intertwined flat lens with large depth of focus[J]. Optica, 9, 288-294(2022).

    [65] Song W, Wang Y, Cheng D et al. Light field head-mounted display with correct focus cue using micro structure array[J]. Chinese Optics Letters, 12(2014).

    [66] Xu C, Cheng D, Peng H et al. Wearable optical see-through head-mounted display capable of adjusting virtual image depth[J]. Chinese Optics Letters, 12(2014).

    [67] Yao C, Cheng D, Yang T et al. Design of an optical see-through light-field near-eye display using a discrete lenslet array[J]. Opt. Express, 26, 18292-18301(2018).

    [68] Cheng D, Wang Y, Xu C et al. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics[J]. Opt. Express, 22, 20705-20719(2014).

    [69] Cheng D, Wang Y, Hua H et al. Design of a wide-angle, lightweight head-mounted display using free-form optics tiling[J]. Opt. Lett., 36, 2098-2100(2011).

    [70] Song W, Cheng D, Deng Z et al. Design and assessment of a wide FOV and high-resolution optical tiled head-mounted display[J]. Appl. Opt., 54, E15-E22(2015).

    [71] Song W, Cheng Q, Surman P et al. Design of a light-field near-eye display using random pinholes[J]. Opt. Express, 27, 23763-23774(2019).

    [72] Han J, Song W, Liu Y et al. 5.2: Design of simulation tools for light-field near-eye displays[J]. SID Symposium Digest of Technical Papers, 50, 50-51(2019).

    [73] Yao C, Wang Y, Lin J et al. Retinal projection head-mounted display[J]. Frontiers of Optoelectronics in China, 10, 1-8(2017).

    [74] Zhang Q, Piao Y, Ma S et al. Design, analysis and optimization of a waveguide-type near-eye display using a pin-mirror array and a concaved reflector[J]. Opt. Express, 30, 33208-33221(2022).

    [75] Zhang Q, Song W, Hu X et al. Design of a near-eye display measurement system using an anthropomorphic vision imaging method[J]. Opt. Express, 29, 13204-13218(2021).

    [76] Gu L, Cheng D, Wang Q et al. Design of a uniform-illumination two-dimensional waveguide head-up display with thin plate compensator[J]. Opt. Express, 27, 12692-12709(2019).

    [77] Zhang Z, Li Y, Guo J et al. Task-driven latent active correction for physics-inspired input method in near-field mixed reality applications[J]. Journal of the Society for Information Display, 26, 496-509(2018).

    [78] Wang Q, Cheng D, Hou Q et al. Design of an ultra-thin, wide-angle, stray-light-free near-eye display with a dual-layer geometrical waveguide[J]. Opt. Express, 28, 35376-35394(2020).

    [80] Gao X, Sang X, Yu X et al. 360° light field 3D display system based on a triplet lenses array and holographic functional screen[J]. Chinese Optics Letters, 15, 121201(2017).

    [81] Yu X, Sang X, Gao X et al. Dynamic three-dimensional light-field display with large viewing angle based on compound lenticular lens array and multi-projectors[J]. Opt. Express, 27, 16024-16031(2019).

    [82] Du J, Sang X, Yu X et al. Large viewing angle floating three-dimensional light field display based on the spatial data reconstruction (SDR) algorithm[J]. Optics Communications, 475, 126229(2020).

    [83] Gao X, Yu X, Sang X et al. Improvement of a floating 3D light field display based on a telecentric retroreflector and an optimized 3D image source[J]. Opt. Express, 29, 40125-40145(2021).

    Tools

    Get Citation

    Copy Citation Text

    Jiaxin KANG, Wenwen WANG, Yuyan PENG, Jiazhen ZHANG, Xiongtu ZHOU, Qun YAN, Tailiang GUO, Yongai ZHANG. Research Status and Trends of Light Field Display Technology[J]. Optoelectronic Technology, 2023, 43(2): 116

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 14, 2022

    Accepted: --

    Published Online: Aug. 31, 2023

    The Author Email:

    DOI:10.19453/j.cnki.1005-488x.2023.02.003

    Topics