Spectroscopy and Spectral Analysis, Volume. 45, Issue 7, 1894(2025)
Study on the Factors Affecting the Signal-to-Noise Ratio of Two-Photon Optical Frequency Standard Spectral Lines Based on Rubidium Atom
[1] [1] Biraben F, Cagnac B, Grynberg G. Physical Review Letters, 1974, 32 (12): 643.
[2] [2] Grynberg G, Cagnac B. Reports on Progress in Physics, 1977, 40(7): 791.
[3] [3] Callejo M, Mursa A, Vicarini R, et al. Journal of the Optical Society of America B, 2024, 42(1): 151.
[4] [4] Newman Z L, Maurice V, Drake T, et al. Optica, 2019,6(5): 680.
[5] [5] Maurice V, Newman Z L, Dickerson S, et al. Optics Express, 2020, 28(17): 24708.
[6] [6] Kristen Cote, Shira Jackson, Ryan Zazo, et al. The Stratospheric Optical Rubidium Clock Experiment[C]. 70th International Astronautical Congress, 2019: 19-A2.1.3.
[7] [7] Quinn T J. Metrologia, 2003, 40(2): 103.
[8] [8] Jaduszliwer B, Camparo J. GPS Solutions, 2021, 25(1): 27.
[9] [9] Leng J, Xu H, Lu H, et al. Journal of the Optical Society of America B, 2019, 36(5): 1183.
[10] [10] Vutha A. New Journal of Physics, 2015, 17(6): 063030.
[11] [11] Nez F, Biraben F, Felder R, et al. Optics Communication, 1993, 102(5-6): 432.
[12] [12] Martin K W, Phelps G, Lemke N D, et al. Physical Review Applied, 2018, 9(1): 014019.
[13] [13] Locke C, Ng S, Scarabel J, et al. Portable Optical Atomic Clock Based on a Dichroic Two-Photon Transition in Rubidium[C]. 2023 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), 2023.
[14] [14] Perrella C, Light P, Anstie J, et al. Physical Review Applied, 2019, 12(5): 054063.
[15] [15] Lemke N D, Martin K W, Beard R, et al. Sensors, 2022, 22(5): 1982.
[16] [16] Lemke N D, Phelps G, Burke J H, et al. The Optical Rubidium Atomic Frequency Standard at AFRL[C]. 2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), 2017: 466.
[17] [17] Li D, Liu K, Wang P, et al. Optics Express, 2024, 32(2): 2766.
[19] [19] Wu J, Hou D, Qin Z, et al. Physical Review A, 2014, 89(4): 041402.
[21] [21] Zhang Y, Fan H. Laser Physics, 2024, 34(7): 075701.
[22] [22] Riehle F. Frequency Standards: Basics and Applications. John Wiley & Sons, 2006.
[23] [23] Cheng B, Wang Z Y, Wu B, et al. Chinese Physics B, 2014, 23(10): 104222.
[24] [24] Deng K, Guo T, Su J, et al. Physics Letters A, 2009, 373(12-13): 1130.
[25] [25] Baryshev V N, Aleynikov M S, Osipenko G V, et al. Quantum Electronics, 2018, 48(5): 443.
[26] [26] Boudot R, Liu X, Abbe P, et al. IEEE Transactions on Ultrasonics, Ferroelectrics, Frequency Control, 2012, 59(11): 2584.
[27] [27] Demtrder W. Laser Spectroscopy: Vol.2 Experimental Techniques. Springer-Verlag, 2008.
[28] [28] Steck D A. “Rubidium 87 D Line Data”, available online at http://steck.us/alkalidata(revision 2.3.3, 28 May 2024).
[29] [29] BIPM. Recommended Values of Standard Frequencies. https://www.bipm.org/en/publications/mises-en-pratique/standard-frequencies.
Get Citation
Copy Citation Text
ZHANG Jiong-yang, ZHAI Hao, XIAO Yu-hua, WANG Ji, DAI Hu, CHEN Jiang. Study on the Factors Affecting the Signal-to-Noise Ratio of Two-Photon Optical Frequency Standard Spectral Lines Based on Rubidium Atom[J]. Spectroscopy and Spectral Analysis, 2025, 45(7): 1894
Received: Dec. 25, 2024
Accepted: Jul. 24, 2025
Published Online: Jul. 24, 2025
The Author Email: ZHAI Hao (2692244353@qq.com)