Journal of Inorganic Materials, Volume. 36, Issue 1, 25(2021)
[1] HATCH L P. Ultimate disposal of radioactive wastes[D]. Am. Sci., 41, 410-421(1953).
[2] RINGWOOD A, KESSON S, WARE N et al. Immobilisation of high level nuclear reactor wastes in SYNROC[D]. Nature, 278, 219-223(1979).
[3] SICKAFUS K E, MINERVINI L, GRIMES R W et al. Radiation tolerance of complex oxides[D]. Science, 289, 748-751(2000).
[4] RAK Z, EWING R C, BECKER U. Ferric garnet matrices for immobilization of actinides[D]. J. Nucl. Mater., 436, 1-7(2013).
[5] CLARKE D R. Ceramic materials for the immobilization of nuclear waste[D]. Annu. Rev. Mater. Sci., 13, 191-218(1983).
[6] ROBERT L E J. Radioactive Waste Management[D]. Annu. Rev. Part Sci., 40, 79-112(1990).
[7] MONTEL J M. Minerals and design of new waste forms for conditioning nuclear waste[D]. Cr. Geosci., 343, 230-236(2011).
[8] ZUR LOYE H C, BESMANN T, AMOROSO J et al. Hierarchical materials as tailored nuclear waste forms: a perspective[D]. Chem Mater., 30, 4475-4488(2018).
[9] MORRISON G, SMITH M D, ZUR LOYE H C. Understanding the formation of salt-inclusion phases: an enhanced flux growth method for the targeted synthesis of salt-inclusion cesium halide uranyl silicates[D]. J. Am. Chem. Soc., 138, 7121-7129(2016).
[10] BURNS P C, EWING R C, NAVROTSKY A. Nuclear fuel in a reactor accident[D]. Science, 335, 1184-1188(2012).
[13] ORLOVA A I, OJOVAN M I. Ceramic mineral waste-forms for nuclear waste immobilization[D]. Materials, 12, 2638(2019).
[14] PROUST V, JEANNIN R, WHITE F D et al. Tailored perovskite waste forms for plutonium trapping[D]. Inorg Chem., 58, 3026-3032(2019).
[15] FINKELDEI S, STENNETT M C, KOWALSKI P M et al. Insights into the fabrication and structure of plutonium pyrochlores[D]. J Mater. Chem. A, 8, 2387-2403(2020).
[16] et alIncorporation of thorium in the zircon structure type through the Th1-
[17] LI Y H, WANG Y Q, ZHOU M et al. Light ion irradiation effects on stuffed Lu2(Ti2.
[18] YANG D Y, XU C P, FU E G et al. Structure. Structure and radiation effect of Er-stuffed pyrochlore Er2(Ti2-
[20] XU M, WU Y, WEI Y. Stable solidification of silica-based ammonium molybdophosphate absorbing cesium using allophane: mechenical property and leaching studies[D]. J. Radioanal. Nucl. Ch., 316, 1313-1321(2018).
[21] WU Y, XU M, WEI Y et al. Stable solidification of silica-based ammonium molybdophosphate in ceramic matrices and its cesium- leaching properties[D]. Chem Lett., 47, 179-182(2018).
[22] DING Y, LI Y J, JIANG Z D et al. Phase evolution and chemical stability of the Nd2O3-ZrO2-SiO2 system synthesized by a novel hydrothermal-assisted Sol-Gel process[D]. J Nucl. Mater., 510, 10-18(2018).
[23] LI S, YANG X, LIU J et al. First-principles calculations and experiments for Ce
4+ effects on structure and chemical stabilities of Zr1-
[24] LU X, SHU X, CHEN S et al. Heavy-ion irradiation effects on U3O8 incorporated Gd2Zr2O7 waste forms[D]. J Hazard Mater., 357, 424-430(2018).
[26] HUANG Y, ZHANG H, ZHOU X et al. Synthesis and microstructure of fluorapatite-type Ca10-2
[27] YANG J W, TANG B L, LUO S G. Immobilization of simulated actinides in pyrochlore-rich synroc[D]. Journal of Nuclear & Radiochemistry, 22, 178-183(2000).
[31] ZHAO X F, TENG Y C, YANG H et al. Comparison of microstructure and chemical durability of Ce0.9Gd0.1PO4 ceramics prepared by hot-press and pressureless sintering[D]. Ceram Int., 41, 11062-11068(2015).
[32] TU H, DUAN T, DING Y et al. Preparation of zircon-matrix material for dealing with high-level radioactive waste with microwave[D]. Mater Lett., 131, 171-173(2014).
[33] BARINOVA T V, PODBOLOTOV K B, BOROVINSKAYA I P et al. Self-propagating high-temperature synthesis of ceramic matrices for immobilization of actinide-containing wastes[D]. Radiochemistry, 56, 554-559(2014).
[34] WANG L, SHUA X Y, YIA F C et al. Rapid fabrication and phase transition of Nd and Ce co-doped Gd2Zr2O7 ceramics by SPS[D]. J Eur. Ceram. Soc., 38, 2863-2870(2018).
[35] LIU X F, NINA F, MARKUS A. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures[D]. Chem. Soc. Rev., 42, 8237-8265(2013).
[36] APURV D, ROBERT V, OLIVIER G et al. Molten salt shielded synthesis of oxidation prone materials in air[D]. Nat Mater., 18, 465-470(2019).
[38] HU Z M, XIAO X, JIN H Y et al. Rapid mass production of two-dimensional metal oxides and hydroxides[D]. via the molten salts method. Nat Commun., 8, 15630-15638(2017).
[39] WU Y J, HONG R Y, WANG L S et al. Molten-salt synthesis and characterization of Bi-substituted yttrium garnet nanoparticles[D]. J Alloys Compd., 481, 96-99(2009).
[40] MATTHEW R. GILBERT. Molten salt synthesis of titanate pyrochlore waste-forms[D]. Ceram. Int., 42, 5263-5270(2016).
[41] HAND M L, STENNETT M C, HYATT N C. Rapid low temperature synthesis of a titanate pyrochlore by molten salt mediated reaction[D]. J. Euro. Ceram. Soc., 32, 3211-3219(2012).
[42] ADEL M, STEPHANIE S, NICOLAS C et al. Coffinite, USiO4, is abundant in nature: so why is it so difficult to synthesize[D]. Inorg Chem., 54, 6687-6696(2015).
[43] WEBER W J. Self-radiation damage and recovery in Pu-doped zircon[D]. Radiat. Eff. Defec. S, 115, 341-349(1991).
[44] BURAKOV B E, ANDERSON E B, ROVSHA V S et al[M]. Synthesis of Zircon for Immobilization of Actinides., 412, 33(1995).
[45] SZENKNECT S, COSTIN D T, CLAVIER N et al. From uranothorites to coffinite: a solid solution route to the thermodynamic properties of USiO4[D]. Inorg Chem., 52, 6957-6968(2013).
[46] PROUST V, JEANNIN R, WHITE F D et al. Tailored perovskite waste forms for plutonium trapping[D]. Inorg Chem., 58, 3026-3032(2019).
[47] DING Y, DAN H, LI J J et al. Structure evolution and aqueous durability of the Nd2O3-CeO2-ZrO2-SiO2 system synthesized by hydrothermal-assisted Sol-Gel route: a potential route for preparing ceramics waste forms[D]. J Nucl. Mater., 519, 217-228(2019).
[48] WANG C, PING W, BAI Q et al. A general method to synthesize and sinter bulk ceramics in seconds[D]. Science, 368, 521-526(2020).
[49] LU F, YAO T, XU J et al. Facile low temperature solid state synthesis of iodoapatite by high-energy ball milling[D]. RSC Advances, 4, 38718(2014).
[50] CAO C, CHONG S, THIRION L et al. Wet chemical synthesis of apatite-based waste forms-a novel room temperature method for the immobilization of radioactive iodine[D]. J Mater. Chem. A, 5, 14331-14342(2017).
[51] HASSAN M U, RYU H J. Cold sintering and durability of iodate- substituted calcium hydroxyapatite (IO-HAp) for the immobilization of radioiodine[D]. J. Nucl. Mater., 514, 84-89(2019).
[52] YANG J H, PARK H S, AHN D H et al. Glass composite waste forms for iodine confined in bismuth-embedded SBA-15[D]. J Nucl. Mater., 480, 150-158(2016).
[53] MINERVINI L, GRIMES R W, SICKAFUS K E et al. Disorder in pyrochlore oxides[D]. J. Am. Ceram. Soc., 83, 1873-1878(2004).
[54] LIAN J, HELEAN K B, KENNEDY B J et al. Effect of structure and thermodynamic stability on the response of lanthanide stannate pyrochlores to ion beam irradiation[D]. J. Phys. Chem. B, 110, 2343-2350(2006).
[55] TU H, DUAN T, DING Y, LU X R et al. Phase and micro- structural evolutions of the CeO2-ZrO2-SiO2 system synthesized by the sol-gel process[D]. Ceram. Int., 6, 8046-8050(2015).
[56] DING Y, LONG X G, PENG S M et al. Phase evolution and chemical durability of Nd-doped zircon ceramics designed to immobilize trivalent actinides[D]. Ceram. Int., 487, 279-304(2015).
[57] CHAPMAN N A. MCKINLEY. The geological disposal of nuclear waste[D]. London: Wiley&Sons(1999).
[58] STRACHAN D, TURCOTTE R, BARNES B. MCC-1: A standard leach test for nuclear waste forms[D]. Nucl. Technol., 56, 306-312(1982).
[59] JANTZEN C M, BIBLER N E, BEAM D C et al. Nuclear waste glass product consistency test (PCT): Version 7.0. Revision 3[D]. Technical Report, Westinghouse Savannah River Co., Aiken, SC(United States), 1994.
[60] SINGH D, MANDALIKA V, PARULEKAR S et al. Magnesium potassium phosphate ceramic for 99Tc immobilization[D]. J. Nucl. Mater., 348, 272-282(2006).
[61] GRIFFITH C S, SEBESTA F, HANNA J V et al. Tungsten bronze- based nuclear waste form ceramics. Part 2: Conversion of granular microporous tungstate-polyacrylonitrile (PAN) composite adsorbents to leach resistant ceramics[D]. J. Nucl. Mater., 358, 151-163(2006).
[62] FAN L, SHU X, LU X et al. Phase structure and aqueous stability of TRPO waste incorporation into Gd2Zr2O7 pyrochlore[D]. Ceram. Int., 41, 11741-11747(2015).
[63] LI S Y, LIU J, YANG X et al. Effect of phase evolution and acidity on the chemical stability of Zr1-
[64] NIKOLAEVA E V, BURAKOV B E. Investigation of Pu-doped ceramics using modified MCC-1 leach test[D]. Mater. Res. Soc. Symp. Proc., 713, 429-432(2002).
[65] WEBER W J, WANG L, HESS N J et al. Radiation effects in nuclear waste materials[D]. OSTI Tech. Rep., 32, 453-454(1998).
[66] LI Y H, WANG Y Q, VALDEZJ A et al. Swelling efects in Y2Ti2O7 pyrochlore irradiated with 400 keV Ne 2+ ions[D]. Nucl. Instrum. Meth. B, 274, 182-187(2012).
[67] LI Y H, WANG Y Q, XU C P et al. Microstructural evolution of the pyrochlore compound Er2Ti2O7 induced by light ion irradiations[D]. Nucl. Instrum. Meth. B, 286, 218-222(2012).
[68] SICKAFUS K E, GRIMES R W, VALDEZJ A et al. Radiation induced amorphization resistance and radiation tolerance in structurally related oxides[D]. Nat. Mater., 6, 217-223(2007).
[69] UTSUNOMIYA S, YUDINTSEV S, EWING R. Radiation effects in ferrate garnet[D]. J. Nucl. Mater., 336, 251-260(2005).
[70] DING Y, JIANG Z D, LI Y J et al. Effect of alpha-particles irradIation on the phase evolution and chemical stability of Nd-doped zircon ceramics[D]. J. Alloys Compd., 729, 483-491(2017).
[71] YANG X Y, WANG S A, LU Y et al. Structures and energetics of point defects with charge states in zircon: a first-principles study[D]. J. Alloys Compd., 759, 60-69(2018).
[72] FINCH R J, HANCHAR J M. Structure and chemistry of zircon and zircon-group minerals[D]. Rev. Miner. Geochem., 53, 1-25(2003).
[73] GALUSKINA I O, GALUSKIN E V, ARMBRUSTER T et al[D]. Bitikleite-(SnAl) and bitikleite-, 95, 959-967(2010).
Get Citation
Copy Citation Text
Tao DUAN, Yi DING, Shilin LUO, Shengtai ZHANG, Jian LIU.
Category: REVIEW
Received: May. 11, 2020
Accepted: --
Published Online: Jan. 21, 2021
The Author Email: