Laser & Optoelectronics Progress, Volume. 61, Issue 2, 0211018(2024)

Optical Coherence Tomography based on Dynamic Changes in Light Field Amplitude for Functional Imaging (Invited)

Jianlong Yang*, Haoran Zhang, Chang Liu, and Chengfu Gu
Author Affiliations
  • School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, Shanghai
  • show less
    References(136)

    [1] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [2] Drexler W, Liu M Y, Kumar A et al. Optical coherence tomography today: speed, contrast, and multimodality[J]. Journal of Biomedical Optics, 19, 071412(2014).

    [3] Swanson E A, Fujimoto J G. The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact[J]. Biomedical Optics Express, 8, 1638-1664(2017).

    [4] Bouma B E, de Boer J F, Huang D et al. Optical coherence tomography[J]. Nature Reviews Methods Primers, 2, 79(2022).

    [5] Araki M, Park S J, Dauerman H L et al. Optical coherence tomography in coronary atherosclerosis assessment and intervention[J]. Nature Reviews Cardiology, 19, 684-703(2022).

    [6] Han T, Qiu J R, Wang D et al. Optical coherence microscopy and its application[J]. Chinese Journal of Lasers, 47, 0207004(2020).

    [7] Drexler W, Morgner U, Ghanta R K et al. Ultrahigh-resolution ophthalmic optical coherence tomography[J]. Nature Medicine, 7, 502-507(2001).

    [8] Chen Z P, Milner T E, Srinivas S et al. Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography[J]. Optics Letters, 22, 1119-1121(1997).

    [9] Liu G J, Chen Z P. Advances in Doppler OCT[J]. Chinese Optics Letters, 11, 011702(2013).

    [10] Kennedy B F, Koh S H, McLaughlin R A et al. Strain estimation in phase-sensitive optical coherence elastography[J]. Biomedical Optics Express, 3, 1865-1879(2012).

    [11] Kennedy B F, Wijesinghe P, Sampson D D. The emergence of optical elastography in biomedicine[J]. Nature Photonics, 11, 215-221(2017).

    [12] de Boer J F, Milner T E, van Gemert M J C et al. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography[J]. Optics Letters, 22, 934-936(1997).

    [13] de Boer J F, Hitzenberger C K, Yasuno Y. Polarization sensitive optical coherence tomography: a review[J]. Biomedical Optics Express, 8, 1838-1873(2017).

    [14] Yi J, Wei Q, Liu W Z et al. Visible-light optical coherence tomography for retinal oximetry[J]. Optics Letters, 38, 1796-1798(2013).

    [15] Shu X, Beckmann L J, Zhang H F. Visible-light optical coherence tomography: a review[J]. Journal of Biomedical Optics, 22, 121707(2017).

    [16] Li Y, Moon S, Chen J J et al. Ultrahigh-sensitive optical coherence elastography[J]. Light: Science & Applications, 9, 58(2020).

    [17] Hendargo H C, Zhao M T, Shepherd N et al. Synthetic wavelength based phase unwrapping in spectral domain optical coherence tomography[J]. Optics Express, 17, 5039-5051(2009).

    [18] Choi W, Potsaid B, Jayaraman V et al. Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source[J]. Optics Letters, 38, 338-340(2013).

    [19] Rao D S S, Jensen M, Grüner-Nielsen L et al. Shot-noise limited, supercontinuum-based optical coherence tomography[J]. Light: Science & Applications, 10, 133(2021).

    [20] Brown W J, Kim S, Wax A. Noise characterization of supercontinuum sources for low-coherence interferometry applications[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 31, 2703-2710(2014).

    [21] Jia Y L, Tan O, Tokayer J et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Optics Express, 20, 4710-4725(2012).

    [22] Mariampillai A, Standish B A, Moriyama E H et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography[J]. Optics Letters, 33, 1530-1532(2008).

    [23] Enfield J, Jonathan E, Leahy M. In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT)[J]. Biomedical Optics Express, 2, 1184-1193(2011).

    [24] Spaide R F, Fujimoto J G, Waheed N K. Optical coherence tomography angiography[J]. Pediatrics International, 35, 2161-2162(2015).

    [25] Gao S S, Jia Y L, Zhang M et al. Optical coherence tomography angiography[J]. Investigative Opthalmology & Visual Science, 57, OCT27-OCT36(2016).

    [26] Lee J, Wu W C, Jiang J Y et al. Dynamic light scattering optical coherence tomography[J]. Optics Express, 20, 22262-22277(2012).

    [27] Apelian C, Harms F, Thouvenin O et al. Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis[J]. Biomedical Optics Express, 7, 1511-1524(2016).

    [28] Guo S J, Wei S W, Lee S et al. Intraoperative speckle variance optical coherence tomography for tissue temperature monitoring during cutaneous laser therapy[J]. IEEE Journal of Translational Engineering in Health and Medicine, 7, 1800608(2019).

    [29] Liu G J, Yang J L, Wang J et al. Extended axial imaging range, widefield swept source optical coherence tomography angiography[J]. Journal of Biophotonics, 10, 1464-1472(2017).

    [30] Tang J B, Erdener S E, Li B Q et al. Shear‐induced diffusion of red blood cells measured with dynamic light scattering‐optical coherence tomography[J]. Journal of Biophotonics, 11, e201700070(2018).

    [31] Scholler J, Groux K, Goureau O et al. Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids[J]. Light, Science & Applications, 9, 140(2020).

    [32] Kashani A H, Chen C L, Gahm J K et al. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications[J]. Progress in Retinal and Eye Research, 60, 66-100(2017).

    [33] Ulrich M, Themstrup L, de Carvalho N et al. Dynamic optical coherence tomography in dermatology[J]. Dermatology, 232, 298-311(2016).

    [34] Chen C L, Wang R K. Optical coherence tomography based angiography[J]. Biomedical Optics Express, 8, 1056-1082(2017).

    [35] Zhu J, Merkle C, Bernucci M et al. Can OCT angiography be made a quantitative blood measurement tool?[J]. Applied Sciences, 7, 687(2017).

    [36] Deán-Ben X L, Gottschalk S, Larney B M et al. Advanced optoacoustic methods for multiscale imaging of in vivo dynamics[J]. Chemical Society Reviews, 46, 2158-2198(2017).

    [37] Levi V, Gratton E. Exploring dynamics in living cells by tracking single particles[J]. Cell Biochemistry and Biophysics, 48, 1-15(2007).

    [38] Lippincott-Schwartz J, Snapp E, Kenworthy A. Studying protein dynamics in living cells[J]. Nature Reviews Molecular Cell Biology, 2, 444-456(2001).

    [39] Lenstra T L, Rodriguez J, Chen H M et al. Transcription dynamics in living cells[J]. Annual Review of Biophysics, 45, 25-47(2016).

    [40] Grebenkov D S. NMR survey of reflected Brownian motion[J]. Reviews of Modern Physics, 79, 1077-1137(2007).

    [41] Tsekov R, Lensen M C. Brownian motion and the temperament of living cells[J]. Chinese Physics Letters, 30, 070501(2013).

    [42] Chin L, Curatolo A, Kennedy B F et al. Analysis of image formation in optical coherence elastography using a multiphysics approach[J]. Biomedical Optics Express, 5, 2913-2930(2014).

    [43] Seesan T, El-Sadek I A, Mukherjee P et al. Deep convolutional neural network-based scatterer density and resolution estimators in optical coherence tomography[J]. Biomedical Optics Express, 13, 168-183(2021).

    [44] Boas D A, Campbell L E, Yodh A G. Scattering and imaging with diffusing temporal field correlations[J]. Physical Review Letters, 75, 1855-1858(1995).

    [45] Stetefeld J, McKenna S A, Patel T R. Dynamic light scattering: a practical guide and applications in biomedical sciences[J]. Biophysical Reviews, 8, 409-427(2016).

    [46] Rabal H J, Braga R A[M]. Dynamic laser speckle and applications(2018).

    [47] Zilpelwar S, Sie E J, Postnov D et al. Model of dynamic speckle evolution for evaluating laser speckle contrast measurements of tissue dynamics[J]. Biomedical Optics Express, 13, 6533-6549(2022).

    [48] Federico A, Kaufmann G H, Galizzi G E et al. Simulation of dynamic speckle sequences and its application to the analysis of transient processes[J]. Optics Communications, 260, 493-499(2006).

    [49] Chen Y W, Hong Y J, Makita S et al. Eye-motion-corrected optical coherence tomography angiography using Lissajous scanning[J]. Biomedical Optics Express, 9, 1111-1129(2018).

    [50] Ju M J, Heisler M, Athwal A et al. Effective bidirectional scanning pattern for optical coherence tomography angiography[J]. Biomedical Optics Express, 9, 2336-2350(2018).

    [51] Chen Y W, Hong Y J, Makita S et al. Three-dimensional eye motion correction by Lissajous scan optical coherence tomography[J]. Biomedical Optics Express, 8, 1783-1802(2017).

    [52] Niederleithner M, Salas M, Leitgeb R A et al. Spiral scanning OCT angiography[J]. Investigative Ophthalmology & Visual Science, 60, PB070(2019).

    [53] Carrasco-Zevallos O M, Viehland C, Keller B et al. Constant linear velocity spiral scanning for near video rate 4D OCT ophthalmic and surgical imaging with isotropic transverse sampling[J]. Biomedical Optics Express, 9, 5052-5070(2018).

    [54] Yang J L, Su J, Wang J E et al. Hematocrit dependence of flow signal in optical coherence tomography angiography[J]. Biomedical Optics Express, 8, 776-789(2017).

    [55] Burchard W. Static and dynamic light scattering from branched polymers and biopolymers[M]. Light scattering from polymers. Advances in polymer science, 48, 1-124(2007).

    [56] Edward J T. Molecular volumes and the Stokes-Einstein equation[J]. Journal of Chemical Education, 47, 261(1970).

    [57] Münter M, vom Endt M, Pieper M et al. Dynamic contrast in scanning microscopic OCT[J]. Optics Letters, 45, 4766-4769(2020).

    [58] Sampson D M, Dubis A M, Chen F K et al. Towards standardizing retinal optical coherence tomography angiography: a review[J]. Light: Science & Applications, 11, 63(2022).

    [59] Choi W J, Kim J K, Kim J K, Pack C G. Imaging motion: a comprehensive review of optical coherence tomography angiography[M]. Advanced imaging and bio techniques for convergence science. Advances in experimental medicine and biology, 1310, 343-365(2021).

    [60] de Carlo T E, Romano A, Waheed N K et al. A review of optical coherence tomography angiography (OCTA)[J]. International Journal of Retina and Vitreous, 1, 1-15(2015).

    [61] Rifai O M, Mcgrory S, Robbins C B et al. The application of optical coherence tomography angiography in Alzheimer’s disease: a systematic review[J]. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 13, e12149(2021).

    [62] Yao X, Alam M N, Le D et al. Quantitative optical coherence tomography angiography: a review[J]. Experimental Biology and Medicine, 245, 301-312(2020).

    [63] Fingler J, Zawadzki R J, Werner J S et al. Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique[J]. Optics Express, 17, 22190-22200(2009).

    [64] Cheng Y X, Guo L, Pan C et al. Statistical analysis of motion contrast in optical coherence tomography angiography[J]. Journal of Biomedical Optics, 20, 116004(2015).

    [65] Deng X F, Liu K Y, Zhu T P et al. Dynamic inverse SNR-decorrelation OCT angiography with GPU acceleration[J]. Biomedical Optics Express, 13, 3615-3628(2022).

    [66] Pi S H, Hormel T T, Wei X et al. Retinal capillary oximetry with visible light optical coherence tomography[J]. Proceedings of the National Academy of Sciences of the United States of America, 117, 11658-11666(2020).

    [67] Xu J J, Song S Z, Wei W et al. Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source[J]. Biomedical Optics Express, 8, 420-435(2016).

    [68] Tsai T H, Ahsen O O, Lee H C et al. Ultrahigh speed endoscopic swept source optical coherence tomography using a VCSEL light source and micromotor catheter[J]. Proceedings of SPIE, 8927, 89270T(2014).

    [69] Tsai T H, Ahsen O O, Lee H C et al. Endoscopic optical coherence angiography enables 3-dimensional visualization of subsurface microvasculature[J]. Gastroenterology, 147, 1219-1221(2014).

    [70] Yang J L, Liu L, Campbell J P et al. Handheld optical coherence tomography angiography[J]. Biomedical Optics Express, 8, 2287-2300(2017).

    [71] Campbell J P, Nudleman E, Yang J L et al. Handheld optical coherence tomography angiography and ultra-wide-field optical coherence tomography in retinopathy of prematurity[J]. JAMA Ophthalmology, 135, 977-981(2017).

    [72] Han L, Tan B Y, Schmetterer L et al. Localized transverse flow measurement with dynamic light scattering line-scan OCT[J]. Biomedical Optics Express, 14, 883-905(2023).

    [73] Bille J F[M]. High resolution imaging in microscopy and ophthalmology: new frontiers in biomedical optics(2019).

    [74] Ploner S B, Moult E M, Choi W et al. Toward quantitative optical coherence tomography angiography[J]. Retina, 36, S118-S126(2016).

    [75] Cheishvili K, Kalkman J. Scanning dynamic light scattering optical coherence tomography for measurement of high omnidirectional flow velocities[J]. Optics Express, 30, 23382-23397(2022).

    [76] Pian Q, Alfadhel M, Tang J B et al. Cortical microvascular blood flow velocity mapping by combining dynamic light scattering optical coherence tomography and two-photon microscopy[J]. Journal of Biomedical Optics, 28, 076003(2023).

    [77] Lee J, Radhakrishnan H, Wu W C et al. Quantitative imaging of cerebral blood flow velocity and intracellular motility using dynamic light scattering-optical coherence tomography[J]. Journal of Cerebral Blood Flow and Metabolism, 33, 819-825(2013).

    [78] Srinivasan V J, Radhakrishnan H, Lo E H et al. OCT methods for capillary velocimetry[J]. Biomedical Optics Express, 3, 612-629(2012).

    [79] Choi W J, Li Y D, Qin W et al. Cerebral capillary velocimetry based on temporal OCT speckle contrast[J]. Biomedical Optics Express, 7, 4859-4873(2016).

    [80] Wang R K, Zhang Q Q, Li Y D et al. Optical coherence tomography angiography-based capillary velocimetry[J]. Journal of Biomedical Optics, 22, 066008(2017).

    [81] Dorronsoro C, Pascual D, Pérez-Merino P et al. Dynamic OCT measurement of corneal deformation by an air puff in normal and cross-linked corneas[J]. Biomedical Optics Express, 3, 473-487(2012).

    [82] Schuh S, Holmes J, Ulrich M et al. Imaging blood vessel morphology in skin: dynamic optical coherence tomography as a novel potential diagnostic tool in dermatology[J]. Dermatology and Therapy, 7, 187-202(2017).

    [83] Ulrich M, Themstrup L, de Carvalho N et al. Dynamic optical coherence tomography of skin blood vessels-proposed terminology and practical guidelines[J]. Journal of the European Academy of Dermatology and Venereology, 32, 152-155(2018).

    [84] Azzollini S, Monfort T, Thouvenin O et al. Dynamic optical coherence tomography for cell analysis[J]. Biomedical Optics Express, 14, 3362-3379(2023).

    [85] Wang L, Fu R Z, Xu C et al. Methods and applications of full-field optical coherence tomography: a review[J]. Journal of Biomedical Optics, 27, 050901(2022).

    [86] Leitgeb R A. En face optical coherence tomography: a technology review[J]. Biomedical Optics Express, 10, 2177-2201(2019).

    [87] Yang H P, Zhang S W, Liu P et al. Use of high-resolution full-field optical coherence tomography and dynamic cell imaging for rapid intraoperative diagnosis during breast cancer surgery[J]. Cancer, 126, 3847-3856(2020).

    [88] Liu L B, Gardecki J A, Nadkarni S K et al. Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography[J]. Nature Medicine, 17, 1010-1014(2011).

    [89] Leung H M, Wang M L, Osman H et al. Imaging intracellular motion with dynamic micro-optical coherence tomography[J]. Biomedical Optics Express, 11, 2768-2778(2020).

    [90] Uribe-Patarroyo N, Post A L, Ruiz-Lopera S et al. Noise and bias in optical coherence tomography intensity signal decorrelation[J]. OSA Continuum, 3, 709-741(2020).

    [91] Maltais-Tariant R, Boudoux C, Uribe-Patarroyo N. Real-time co-localized OCT surveillance of laser therapy using motion corrected speckle decorrelation[J]. Biomedical Optics Express, 11, 2925-2950(2020).

    [92] Lo W C Y, Uribe-Patarroyo N, Hoebel K et al. Balloon catheter-based radiofrequency ablation monitoring in porcine esophagus using optical coherence tomography[J]. Biomedical Optics Express, 10, 2067-289(2019).

    [93] Lee S, Wei S W, Guo S J et al. Selective retina therapy monitoring by speckle variance optical coherence tomography for dosimetry control[J]. Journal of Biomedical Optics, 25, 026001(2020).

    [94] Lo W C Y, Uribe-Patarroyo N, Nam A S et al. Laser thermal therapy monitoring using complex differential variance in optical coherence tomography[J]. Journal of Biophotonics, 10, 84-91(2017).

    [95] Wang T S, Pfeiffer T, Wu M et al. Thermo-elastic optical coherence tomography[J]. Optics Letters, 42, 3466-3469(2017).

    [96] Zhao X W, Fu X Y, Blumenthal C et al. Integrated RFA/PSOCT catheter for real-time guidance of cardiac radio-frequency ablation[J]. Biomedical Optics Express, 9, 6400-6411(2018).

    [97] Zhao X W, Ziv O, Mohammadpour R et al. Polarization-sensitive optical coherence tomography monitoring of percutaneous radiofrequency ablation in left atrium of living swine[J]. Scientific Reports, 11, 24330(2021).

    [98] Nam A S, Chico-Calero I, Vakoc B J. Complex differential variance algorithm for optical coherence tomography angiography[J]. Biomedical Optics Express, 5, 3822-3832(2014).

    [99] Shibasaki H. Cortical activities associated with voluntary movements and involuntary movements[J]. Clinical Neurophysiology, 123, 229-243(2012).

    [100] Rolfs M. Microsaccades: small steps on a long way[J]. Vision Research, 49, 2415-2441(2009).

    [101] Herzog W. Muscle function in movement and sports[J]. The American Journal of Sports Medicine, 24, S14-S19(1996).

    [102] Yang J L, Hu Y, Fang L Y et al. Universal digital filtering for denoising volumetric retinal OCT and OCT angiography in 3D shearlet domain[J]. Optics Letters, 45, 694-697(2020).

    [103] Yang J L, Fang L Y, Hu Y et al. 2D transform-domain Fourier filters for eliminating microsaccade noise in en face optical coherence tomography angiography[J]. Proceedings of SPIE, 11078, 110781U(2019).

    [104] Kraus M F, Liu J J, Schottenhamml J et al. Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization[J]. Biomedical Optics Express, 5, 2591-2613(2014).

    [105] Zang P X, Liu G J, Zhang M et al. Automated motion correction using parallel-strip registration for wide-field en face OCT angiogram[J]. Biomedical Optics Express, 7, 2823-2836(2016).

    [106] Braaf B, Vienola K V, Sheehy C K et al. Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO[J]. Biomedical Optics Express, 4, 51-65(2013).

    [107] Ip L P S, Nguyen T Q, Bartsch D U. Fundus based eye tracker for optical coherence tomography[C], 1505-1508(2005).

    [108] Draelos M, Ortiz P, Qian R B et al. Contactless optical coherence tomography of the eyes of freestanding individuals with a robotic scanner[J]. Nature Biomedical Engineering, 5, 726-736(2021).

    [109] Kozak I, Rahn U. Navigation technology/eye-tracking in ophthalmology: principles, applications and benefits: a narrative review[J]. Annals of Eye Science, 6, 6(2021).

    [110] Wang T S, Pfeiffer T, Regar E et al. Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography[J]. Biomedical Optics Express, 6, 5021-5032(2015).

    [111] Klein T, Huber R. High-speed OCT light sources and systems[J]. Biomedical Optics Express, 8, 828-859(2017).

    [112] Huo T C, Wang C M, Zhang X et al. Ultrahigh-speed optical coherence tomography utilizing all-optical 40 MHz swept-source[J]. Journal of Biomedical Optics, 20, 030503(2015).

    [113] Xue P. Development of high-performance optical coherence tomography[J]. Chinese Journal of Lasers, 48, 1517001(2021).

    [114] Xu Y H, Qiu C, Chen Y Y et al. Research progress of high-speed and wide-tuned frequency swept lasers for optical coherence tomography applications[J]. Laser & Optoelectronics Progress, 60, 1600003(2023).

    [115] Tan B Y, Hosseinaee Z, Han L et al. 250 kHz, 1.5 µm resolution SD-OCT for in-vivo cellular imaging of the human cornea[J]. Biomedical Optics Express, 9, 6569-6583(2018).

    [116] Mohan N, Vakoc B. Principal-component-analysis-based estimation of blood flow velocities using optical coherence tomography intensity signals[J]. Optics Letters, 36, 2068-2070(2011).

    [117] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-444(2015).

    [118] Burwood G W S, Dziennis S, Wilson T et al. The mechanoelectrical transducer channel is not required for regulation of cochlear blood flow during loud sound exposure in mice[J]. Scientific Reports, 10, 9229(2020).

    [119] Chen R X, Yao L, Liu K Y et al. Improvement of decorrelation-based OCT angiography by an adaptive spatial-temporal kernel in monitoring stimulus-evoked hemodynamic responses[J]. IEEE Transactions on Medical Imaging, 39, 4286-4296(2020).

    [120] Liu K Y, Zhu T P, Gao M Q et al. Functional OCT angiography reveals early retinal neurovascular dysfunction in diabetes with capillary resolution[J]. Biomedical Optics Express, 14, 1670-1684(2023).

    [121] Zhang H H, Yang J L, Zhou K et al. Automatic segmentation and visualization of choroid in OCT with knowledge infused deep learning[J]. IEEE Journal of Biomedical and Health Informatics, 24, 3408-3420(2020).

    [122] Fang L Y, Cunefare D, Wang C et al. Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search[J]. Biomedical Optics Express, 8, 2732-2744(2017).

    [123] Zhang H R, Yang J L, Zheng C et al. Annotation-efficient learning for OCT segmentation[J]. Biomedical Optics Express, 14, 3294-3307(2023).

    [124] Vaidyanathan P P. Generalizations of the sampling theorem: seven decades after Nyquist[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48, 1094-1109(2001).

    [125] Rao H L, Pradhan Z S, Suh M H et al. Optical coherence tomography angiography in glaucoma[J]. Journal of Glaucoma, 29, 312-321(2020).

    [126] Takao H, Jyunya K, Yuichi T et al. Quantifying vascular density and morphology using different swept-source optical coherence tomography angiographic scan patterns in diabetic retinopathy[J]. The British Journal of Ophthalmology, 103, 216-221(2019).

    [127] Munk M R, Giannakaki-Zimmermann H, Berger L et al. OCT-angiography: a qualitative and quantitative comparison of 4 OCT-a devices[J]. PLoS One, 12, e0177059(2017).

    [128] Zhou T, Yang J L, Zhou K et al. Digital resolution enhancement in low transverse sampling optical coherence tomography angiography using deep learning[J]. OSA Continuum, 3, 1664-1678(2020).

    [129] Jiang Z, Huang Z Y, Qiu B et al. Weakly supervised deep learning-based optical coherence tomography angiography[J]. IEEE Transactions on Medical Imaging, 40, 688-698(2021).

    [130] Wang L Y, Chen Z Y, Zhu Z Y et al. Compressive-sensing swept-source optical coherence tomography angiography with reduced noise[J]. Journal of Biophotonics, 15, e202200087(2022).

    [131] Fechtig D J, Grajciar B, Schmoll T et al. Line-field parallel swept source MHz OCT for structural and functional retinal imaging[J]. Biomedical Optics Express, 6, 716-735(2015).

    [132] Han L, Tan B Y, Hosseinaee Z et al. Line-scanning SD-OCT for in-vivo, non-contact, volumetric, cellular resolution imaging of the human cornea and limbus[J]. Biomedical Optics Express, 13, 4007-4020(2022).

    [133] Hillmann D, Spahr H, Pfäffle C et al. In vivo optical imaging of physiological responses to photostimulation in human photoreceptors[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 13138-13143(2016).

    [134] Dubois A, Levecq O, Azimani H et al. Line-field confocal time-domain optical coherence tomography with dynamic focusing[J]. Optics Express, 26, 33534-33542(2018).

    [135] Cao R J, Li Y N, Chen X et al. Open-3DSIM: an open-source three-dimensional structured illumination microscopy reconstruction platform[J]. Nature Methods, 20, 1183-1186(2023).

    [136] Treeby B E, Cox B T. K-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields[J]. Journal of Biomedical Optics, 15, 021314(2010).

    Tools

    Get Citation

    Copy Citation Text

    Jianlong Yang, Haoran Zhang, Chang Liu, Chengfu Gu. Optical Coherence Tomography based on Dynamic Changes in Light Field Amplitude for Functional Imaging (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(2): 0211018

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Imaging Systems

    Received: Sep. 1, 2023

    Accepted: Dec. 11, 2023

    Published Online: Feb. 6, 2024

    The Author Email: Jianlong Yang (jyangoptics@gmail.com)

    DOI:10.3788/LOP232021

    CSTR:32186.14.LOP232021

    Topics