Chinese Journal of Liquid Crystals and Displays, Volume. 35, Issue 7, 725(2020)

Review on multi-plane augmented reality display based on liquid crystal scattering films

LIU Shu-xin*, LI Yan, and SU Yi-kai
Author Affiliations
  • [in Chinese]
  • show less
    References(82)

    [1] [1] GENG J. Three-dimensional display technologies [J]. Adv. Opt. Photonics, 2013, 5(4): 456-535.

              GENG J. Three-dimensional display technologies [J]. Adv. Opt. Photonics, 2013, 5(4): 456-535.

    [2] [2] JAVIDI B, OKANO F. Three-dimensional Television, Video, and Display Technologies [M]. Berlin Heidelberg: Springer, 2002.

              JAVIDI B, OKANO F. Three-dimensional Television, Video, and Display Technologies [M]. Berlin Heidelberg: Springer, 2002.

    [3] [3] CARMIGNIANI J, FURHT B, ANISETTI M, et al. Augmented reality technologies, systems and applications [J]. Multimed. Tools Appl., 2011, 51(1): 341-377.

              CARMIGNIANI J, FURHT B, ANISETTI M, et al. Augmented reality technologies, systems and applications [J]. Multimed. Tools Appl., 2011, 51(1): 341-377.

    [4] [4] CAKMAKCI O, ROLLAND J. Head-worn displays: a review [J]. J. Disp. Technol., 2006, 2(3): 199-216.

              CAKMAKCI O, ROLLAND J. Head-worn displays: a review [J]. J. Disp. Technol., 2006, 2(3): 199-216.

    [5] [5] ZOU B C, LIU Y, GUO M, et al. EEG-based assessment of stereoscopic 3D visual fatigue caused by vergence-accommodation conflict [J]. J. Disp. Technol., 2015, 11(12): 1076-1083.

              ZOU B C, LIU Y, GUO M, et al. EEG-based assessment of stereoscopic 3D visual fatigue caused by vergence-accommodation conflict [J]. J. Disp. Technol., 2015, 11(12): 1076-1083.

    [6] [6] SHIBATA T, KIM J, HOFFMAN D M, et al. Visual discomfort with stereo displays: effects of viewing distance and direction of vergence-accommodation conflict [C]//Proceedings of SPIE Stereoscopic Displays and Applications XXII. San Francisco Airport, California, United States: SPIE, 2011: 78630P.

              SHIBATA T, KIM J, HOFFMAN D M, et al. Visual discomfort with stereo displays: effects of viewing distance and direction of vergence-accommodation conflict [C]//Proceedings of SPIE Stereoscopic Displays and Applications XXII. San Francisco Airport, California, United States: SPIE, 2011: 78630P.

    [7] [7] HUA H, JAVIDI B. A 3D integral imaging optical see-through head-mounted display [J]. Opt. Express, 2014, 22(11): 13484-13491.

              HUA H, JAVIDI B. A 3D integral imaging optical see-through head-mounted display [J]. Opt. Express, 2014, 22(11): 13484-13491.

    [8] [8] PARK J H, HONG K, LEE B. Recent progress in three-dimensional information processing based on integral imaging [J]. Appl. Opt., 2009, 48(34): H77-H94.

              PARK J H, HONG K, LEE B. Recent progress in three-dimensional information processing based on integral imaging [J]. Appl. Opt., 2009, 48(34): H77-H94.

    [9] [9] SONG W T, CHENG Q J, LIU Y, et al. Three-dimensional image authentication using binarized images in double random phase integral imaging [J]. Chin. Opt. Lett., 2019, 17(5): 051002.

              SONG W T, CHENG Q J, LIU Y, et al. Three-dimensional image authentication using binarized images in double random phase integral imaging [J]. Chin. Opt. Lett., 2019, 17(5): 051002.

    [10] [10] HONG K, YEOM J, JANG C, et al. Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality [J]. Opt. Lett., 2014, 39(1): 127-130.

              HONG K, YEOM J, JANG C, et al. Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality [J]. Opt. Lett., 2014, 39(1): 127-130.

    [11] [11] LI G, LEE D,JEONG Y, et al. Holographic display for see-through augmented reality using mirror-lens holographic optical element [J]. Opt. Lett., 2016, 41(11): 2486-2489.

              LI G, LEE D,JEONG Y, et al. Holographic display for see-through augmented reality using mirror-lens holographic optical element [J]. Opt. Lett., 2016, 41(11): 2486-2489.

    [12] [12] WAKUNAMI K, HSIEH P Y, OI R, et al. Projection-type see-through holographic three-dimensional display [J]. Nat. Commun., 2016, 7: 12954.

              WAKUNAMI K, HSIEH P Y, OI R, et al. Projection-type see-through holographic three-dimensional display [J]. Nat. Commun., 2016, 7: 12954.

    [13] [13] LI X, CHEN C P, GAO H Y, et al. Video-rate holographic display using azo-dye-doped liquid crystal [J]. J. Disp. Technol., 2014, 10(6): 438-443.

              LI X, CHEN C P, GAO H Y, et al. Video-rate holographic display using azo-dye-doped liquid crystal [J]. J. Disp. Technol., 2014, 10(6): 438-443.

    [14] [14] LI X, CHEN C P, LI Y, et al. Real-time holographic display using quantum dot doped liquid crystal [J]. SID Symp. Dig. Tech. Pap., 2014, 45(1): 736-738.

              LI X, CHEN C P, LI Y, et al. Real-time holographic display using quantum dot doped liquid crystal [J]. SID Symp. Dig. Tech. Pap., 2014, 45(1): 736-738.

    [15] [15] UENO T, TAKAKI Y. Super multi-view near-eye display using time-multiplexing technique [C]//Proceedings of 3D Image Acquisition and Display: Technology, Perception and Applications. Orlando, Florida, the United States: OSA, 2018: 3Tu2G.4.

              UENO T, TAKAKI Y. Super multi-view near-eye display using time-multiplexing technique [C]//Proceedings of 3D Image Acquisition and Display: Technology, Perception and Applications. Orlando, Florida, the United States: OSA, 2018: 3Tu2G.4.

    [16] [16] TENG D D, XIONG Y, LIU L L, et al. Multiview three-dimensional display with continuous motion parallax through planar aligned OLED microdisplays [J]. Opt. Express, 2015, 23(5): 6007-6019.

              TENG D D, XIONG Y, LIU L L, et al. Multiview three-dimensional display with continuous motion parallax through planar aligned OLED microdisplays [J]. Opt. Express, 2015, 23(5): 6007-6019.

    [17] [17] TENG D D, WANG B, GENG T, et al. Super-parallel holographic correlator with optical fixing [J]. Opt. Laser Technol., 2007, 39(6): 1125-1129.

              TENG D D, WANG B, GENG T, et al. Super-parallel holographic correlator with optical fixing [J]. Opt. Laser Technol., 2007, 39(6): 1125-1129.

    [18] [18] AKELEY K, WATT S J, GIRSHICK A R, et al. A stereo display prototype with multiple focal distances [J]. ACM Trans. Graphics, 2004, 23(3): 804-813.

              AKELEY K, WATT S J, GIRSHICK A R, et al. A stereo display prototype with multiple focal distances [J]. ACM Trans. Graphics, 2004, 23(3): 804-813.

    [19] [19] SMALLEY D E, NYGAARD E, SQUIRE K, et al. A photophoretic-trap volumetric display [J]. Nature, 2018, 553(7689): 486-490.

              SMALLEY D E, NYGAARD E, SQUIRE K, et al. A photophoretic-trap volumetric display [J]. Nature, 2018, 553(7689): 486-490.

    [20] [20] LIU S, HUA H, CHENG D W. A novel prototype for an optical see-through head-mounted display with addressable focus cues [J]. IEEE Trans. Vis. Comput. Graphics, 2010, 16(3): 381-393.

              LIU S, HUA H, CHENG D W. A novel prototype for an optical see-through head-mounted display with addressable focus cues [J]. IEEE Trans. Vis. Comput. Graphics, 2010, 16(3): 381-393.

    [21] [21] HU X D, HUA H. Design and assessment of a depth-fused multi-focal-plane display prototype [J]. J. Disp. Technol., 2014, 10(4): 308-316.

              HU X D, HUA H. Design and assessment of a depth-fused multi-focal-plane display prototype [J]. J. Disp. Technol., 2014, 10(4): 308-316.

    [22] [22] HU X D, HUA H. Design and tolerance of a free-form optical system for an optical see-through multi-focal-plane display [J]. Appl. Opt., 2015, 54(33): 9990-9999.

              HU X D, HUA H. Design and tolerance of a free-form optical system for an optical see-through multi-focal-plane display [J]. Appl. Opt., 2015, 54(33): 9990-9999.

    [23] [23] CHEN H S, WANG Y J, CHEN P J, et al. Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens [J]. Opt. Express, 2015, 23(22): 28154-28162.

              CHEN H S, WANG Y J, CHEN P J, et al. Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens [J]. Opt. Express, 2015, 23(22): 28154-28162.

    [24] [24] TAN G J, ZHAN T, LEE Y H, et al. Polarization-multiplexed multiplane display [J]. Opt. Lett., 2018, 43(22): 5651-5654.

              TAN G J, ZHAN T, LEE Y H, et al. Polarization-multiplexed multiplane display [J]. Opt. Lett., 2018, 43(22): 5651-5654.

    [25] [25] LEE Y H, TAN G J, YIN K, et al. Compact see-through near-eye display with depth adaption [J]. J. Soc. Inf. Disp., 2018, 26(2): 64-70.

              LEE Y H, TAN G J, YIN K, et al. Compact see-through near-eye display with depth adaption [J]. J. Soc. Inf. Disp., 2018, 26(2): 64-70.

    [26] [26] LEE Y H, TAN G J, ZHAN T, et al. Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities [J]. Opt. Data Process. Storage, 2017, 3(1): 79-88.

              LEE Y H, TAN G J, ZHAN T, et al. Recent progress in Pancharatnam-Berry phase optical elements and the applications for virtual/augmented realities [J]. Opt. Data Process. Storage, 2017, 3(1): 79-88.

    [27] [27] LIU S X, LI Y, ZHOU P C, et al. A multi-plane optical see-through head mounted display design for augmented reality applications [J]. J. Soc. Inf. Disp., 2016, 24(4): 246-251.

              LIU S X, LI Y, ZHOU P C, et al. A multi-plane optical see-through head mounted display design for augmented reality applications [J]. J. Soc. Inf. Disp., 2016, 24(4): 246-251.

    [28] [28] LIU S X, LI Y, SU Y K. Multiplane displays based on liquid crystals for AR applications [J]. J. Soc. Inf. Disp., 2020, 28(3): 224-240.

              LIU S X, LI Y, SU Y K. Multiplane displays based on liquid crystals for AR applications [J]. J. Soc. Inf. Disp., 2020, 28(3): 224-240.

    [29] [29] LIU S X, LI Y, ZHOU P C, et al. Full-color multi-plane optical see-through head-mounted display for augmented reality applications [J]. J. Soc. Inf. Disp., 2018, 26(12): 687-693.

              LIU S X, LI Y, ZHOU P C, et al. Full-color multi-plane optical see-through head-mounted display for augmented reality applications [J]. J. Soc. Inf. Disp., 2018, 26(12): 687-693.

    [30] [30] LIU S X, LI Y, ZHOU P C, et al. Reverse-mode PSLC multi-plane optical see-through display for AR applications [J]. Opt. Express, 2018, 26(3): 3394-3403.

              LIU S X, LI Y, ZHOU P C, et al. Reverse-mode PSLC multi-plane optical see-through display for AR applications [J]. Opt. Express, 2018, 26(3): 3394-3403.

    [31] [31] LEE Y H, CHEN H W, MARTINEZ R, et al. Multi-image plane display based on polymer-stabilized cholesteric texture [J]. SID Symp. Dig. Tech. Pap., 2017, 48(1): 760-762.

              LEE Y H, CHEN H W, MARTINEZ R, et al. Multi-image plane display based on polymer-stabilized cholesteric texture [J]. SID Symp. Dig. Tech. Pap., 2017, 48(1): 760-762.

    [32] [32] JOSHI V, GROOM M, CHIEN L C. Glasses-free 3-D visualization with multi-layered transparent cholesteric films [J]. Opt. Express, 2019, 27(12): 16847-16854.

              JOSHI V, GROOM M, CHIEN L C. Glasses-free 3-D visualization with multi-layered transparent cholesteric films [J]. Opt. Express, 2019, 27(12): 16847-16854.

    [33] [33] CHEN Q M, PENG Z H, LI Y, et al. Multi-plane augmented reality display based on cholesteric liquid crystal reflective films [J]. Opt. Express, 2019, 27(9): 12039-12047.

              CHEN Q M, PENG Z H, LI Y, et al. Multi-plane augmented reality display based on cholesteric liquid crystal reflective films [J]. Opt. Express, 2019, 27(9): 12039-12047.

    [34] [34] CHEN Q M, PENG Z H, LI Y, et al. Multi-plane display based on cholosteric liquid crystal films [J]. SID Symp. Dig. Tech. Pap., 2019, 50(S1): 358-360.

              CHEN Q M, PENG Z H, LI Y, et al. Multi-plane display based on cholosteric liquid crystal films [J]. SID Symp. Dig. Tech. Pap., 2019, 50(S1): 358-360.

    [35] [35] LEE Y H, PENG F L, WU S T. Fast-response switchable lens for 3D and wearable displays [J]. Opt. Express, 2016, 24(2): 1668-1675.

              LEE Y H, PENG F L, WU S T. Fast-response switchable lens for 3D and wearable displays [J]. Opt. Express, 2016, 24(2): 1668-1675.

    [36] [36] LEE C K, MOON S, LEE S, et al. Compact three-dimensional head-mounted display system with Savart plate [J]. Opt. Express, 2016, 24(17): 19531-19544.

              LEE C K, MOON S, LEE S, et al. Compact three-dimensional head-mounted display system with Savart plate [J]. Opt. Express, 2016, 24(17): 19531-19544.

    [37] [37] YANG D K, WU S T. Fundamentals of Liquid Crystal Devices [M]. Chichester, West Sussex, United Kingdom: John Wiley & Sons, 2015.

              YANG D K, WU S T. Fundamentals of Liquid Crystal Devices [M]. Chichester, West Sussex, United Kingdom: John Wiley & Sons, 2015.

    [38] [38] SUN J, WU S T. Recent advances in polymer network liquid crystal spatial light modulators [J]. J. Polym. Sci. Part B: Polym. Phys., 2014, 52(3): 183-192.

              SUN J, WU S T. Recent advances in polymer network liquid crystal spatial light modulators [J]. J. Polym. Sci. Part B: Polym. Phys., 2014, 52(3): 183-192.

    [39] [39] SUN J, XIANYU H Q, CHEN Y, et al. Submillisecond-response polymer network liquid crystal phase modulators at 1.06-μm wavelength [J]. Appl. Phys. Lett., 2011, 99(2): 021106.

              SUN J, XIANYU H Q, CHEN Y, et al. Submillisecond-response polymer network liquid crystal phase modulators at 1.06-μm wavelength [J]. Appl. Phys. Lett., 2011, 99(2): 021106.

    [40] [40] RYABCHUN A, BOBROVSKY A. Cholesteric liquid crystal materials for tunable diffractive optics [J]. Adv. Opt. Mater., 2018, 6(15): 1800335.

              RYABCHUN A, BOBROVSKY A. Cholesteric liquid crystal materials for tunable diffractive optics [J]. Adv. Opt. Mater., 2018, 6(15): 1800335.

    [41] [41] MITOV M. Cholesteric liquid crystals with a broad light reflection band [J]. Adv. Mater., 2012, 24(47): 6260-6276.

              MITOV M. Cholesteric liquid crystals with a broad light reflection band [J]. Adv. Mater., 2012, 24(47): 6260-6276.

    CLP Journals

    [1] LIU Shu-xin, ZHUANG Zhong-sen, LI Yan, YAN Ze-kun, SU Yi-kai. Research and application: liquid crystal devices fabricated by single-exposure photoalignment[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(6): 761

    Tools

    Get Citation

    Copy Citation Text

    LIU Shu-xin, LI Yan, SU Yi-kai. Review on multi-plane augmented reality display based on liquid crystal scattering films[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 725

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 12, 2020

    Accepted: --

    Published Online: Oct. 27, 2020

    The Author Email: LIU Shu-xin (liushuxin@sjtu.edu.cn)

    DOI:10.37188/yjyxs20203507.0725

    Topics