Acta Optica Sinica, Volume. 44, Issue 6, 0628001(2024)

Oriented Object Detection in Remote Sensing Images Based on Feature Recombination

Youwei Wang1,2, Ying Guo1,2、*, Xiangying Shao1,2, Jiyu Wang1,2, and Zhengwei Bao1,2
Author Affiliations
  • 1Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China
  • 2School of Automation, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China
  • show less
    Figures & Tables(18)
    Framework of Rotated RPN
    Framework of PFR-Rotate
    Framework of reshape model
    Framework of feature recombination model
    Midpoint offset definition method
    Flow chart of ATT-ORPN
    Structure diagram of double polarization attention head
    Average precision (AP) for each category in Dior-R dataset for each experiment
    Loss function and mAP comparison. (a) Loss function; (b) mAP
    Comparison of visualization results for Dior-R dataset
    Comparison of visualization results for HRSC2016 dataset
    • Table 1. Comparison of FPN ablation experimental results

      View table

      Table 1. Comparison of FPN ablation experimental results

      BaselineSPPCBAMSECarafereshapeFRmAP /%mAP variation /%Recall /%f /(frame·s-1
      59.54
      62.26↑2.7271.0756.6
      62.32↑2.7871.1154.3
      62.42↑2.8871.2956.7
      62.49↑2.9571.3151.9
      62.77↑3.2370.1856.6
      62.86↑3.3270.3555.3
      62.90↑3.3670.4254.6
      63.03↑3.4970.6851.3
    • Table 2. Comparison of polarization function ablation experimental results

      View table

      Table 2. Comparison of polarization function ablation experimental results

      clsregmAP /%
      Eq .(2)Eq .(3)Eq .(4)Eq .(5)Eq .(6)Eq .(7)
      61.38
      60.87
      61.03
      61.97
      61.52
      61.59
      62.58
      61.70
      61.96
    • Table 3. Ablation experiment for value selection about η in Eq. (4)

      View table

      Table 3. Ablation experiment for value selection about η in Eq. (4)

      Modelsη=5η=10η=15η=20
      mAP /%62.1362.3762.5862.55
    • Table 4. Comparison of ablation experimental results

      View table

      Table 4. Comparison of ablation experimental results

      BaselineFR-FPNATT-ORPNPA-headSWAmAP /%mAP variation /%Recall /%f /(frame·s-1
      59.54
      63.03↑3.4970.6851.3
      62.36↑2.8269.9029.8
      62.58↑3.0470.3142.6
      63.83↑4.2971.1618.9
      64.49↑4.9571.3512.8
    • Table 5. Comparison of precision of different network models on Dior-R dataset

      View table

      Table 5. Comparison of precision of different network models on Dior-R dataset

      ModelRetinaNet-O22Rotated RPN15Gliding Vertex23ROI Transformer11AOPG19PFR-RotatePFR-Rotate(ms)
      mAP57.5559.5460.0663.8764.4164.4965.97
      APL61.4962.7965.3563.3462.3964.2564.54
      APO28.5226.828.8737.8837.7939.7841.2
      BF73.5771.7274.9671.7871.6273.3975.5
      BC81.1780.9181.3387.5387.6382.1383.55
      BR23.9834.233.8840.6840.940.9841.69
      CH72.5472.5774.3172.672.4773.8975.54
      DAM19.9418.9519.5826.8631.0829.9831.35
      ETS72.3966.4570.7278.7165.4270.9173.02
      ESA58.265.7564.768.0977.9977.5678.82
      GF69.2566.6372.368.9673.279.1879.4
      GTF79.5479.2478.6882.7481.9481.6683.55
      HA32.1434.9534.2247.7142.3237.3940.19
      OP44.8748.7974.6455.6154.4550.6253.56
      SH77.7181.1480.2281.2181.1782.1883.38
      STA67.5764.3469.2678.2372.6976.2478.21
      STO61.0971.2161.1370.2671.3172.6874.56
      TC81.4681.4481.4981.6181.4981.5382.05
      TS47.3347.3144.7654.8660.0457.5258.75
      VE38.0150.4647.7143.2752.3850.5751.64
      WM60.2465.2165.0465.5269.9967.5169.64
    • Table 6. Comparison of directional and directed labeling results of Dior-R dataset

      View table

      Table 6. Comparison of directional and directed labeling results of Dior-R dataset

      Directional labelingDirected labeling
      ModelBackbonemAP /%ModelBackbonemAP /%
      SSD24VGG1658.6Retinanet-O22Resnet5057.55
      YOLO V325Darknet5357.1Rotated RPN15Resnet5059.54
      Cascade R-CNN26Resnet5060.5Gliding Vertex23Resnet5060.06
      SA-Cascade27Resnet5062.1PRF-RotateResnet5064.49
    • Table 7. Comparison of test results of different network models on HRSC2016 dataset

      View table

      Table 7. Comparison of test results of different network models on HRSC2016 dataset

      ModelBackbonemAP(07)/%mAP(12)/%
      RetinaNet-O22Resnet10189.1895.21
      Rotated RPN15Resnet5079.0885.64
      Gliding Vertex23Resnet10188.20
      ROI Transformer11Resnet10186.20
      S2A-Net25Resnet10190.1795.01
      AOPG19Resnet10190.3496.22
      Oriented R-CNN28Resnet5090.4096.50
      Oriented RepPoints29Resnet5090.3897.26
      AFO-RPN30Resnet10190.45
      PFR-RotateResnet5090.8397.35
    Tools

    Get Citation

    Copy Citation Text

    Youwei Wang, Ying Guo, Xiangying Shao, Jiyu Wang, Zhengwei Bao. Oriented Object Detection in Remote Sensing Images Based on Feature Recombination[J]. Acta Optica Sinica, 2024, 44(6): 0628001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: May. 10, 2023

    Accepted: Jun. 27, 2023

    Published Online: Mar. 4, 2024

    The Author Email: Guo Ying (yguo@nuist.edu.cn)

    DOI:10.3788/AOS230957

    Topics