Computer Engineering, Volume. 51, Issue 8, 168(2025)
Attentional BiLSTM and prototype networks for lncRNA subcellular localization prediction
[1] [1] TAFT, R.J.; PANG, K.C.; MERCER, T.R.; DINGER, M.E.; MATTICK, J.S. Non-coding RNAs: Regulators of disease. J. Pathol. 2010, 220, 126-139. [PubMed]
[2] [2] B. A H, Dimitrios T, Myriam G. Integrated lncRNA function upon genomic and epigenomic regulation[J]. Molecular Cell, 2022, 82(12): 2252-2266.
[3] [3] S J M, P P A, Piero C, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations.[J]. Nature reviews. Molecular cell biology, 2023, 24(6): 430-447.
[4] [4] Luisa S, ChunJie G, C L L, et al. Gene regulation by long non-coding RNAs and its biological functions.[J]. Nature reviews. Molecular cell biology, 2020, 22(2): 96-118.
[5] [5] Sharma H, Carninci P. The Secret Life of lncRNAs: Conserved, yet Not Conserved[J]. Cell, 2020, 181(3): 512-514.
[6] [6] Kai S, Nannan W, Qianqian S, et al. The role of a ceRNA regulatory network based on lncRNA MALAT1 site in cancer progression[J]. Biomedicine Pharmacotherapy, 2021, 137111389-111389.
[8] [8] YAO R W, WANG Y, CHEN L L. Cellular functions of long noncoding RNAs[J]. Nature cell biology, 2019, 21(5): 542-551.
[9] [9] Li R H, Tian T, Ge Q W, et al. A phosphatidic acid-binding lncRNA SNHG9 facilitates LATS1 liquid-liquid phase separation to promote oncogenic YAP signaling.[J]. Cell research, 2021, 31(10): 1088-1105.
[10] [10] WEN X, GAO L, GUO X, et al. lncSLdb: a resource for long non-coding RNA subcellular localization[J]. Database, 2018, 2018.
[11] [11] XIE F, TIMME K A, WOOD J R. Using Single Molecule mRNA Fluorescent in Situ Hybridization (RNA-FISH) to Quantify mRNA in Individual Murine Oocytes and Embryos[J]. Scientific Reports, 2018, 8(1): 7930.
[12] [12] SU Z D, HUANG Y, ZHANG Z Y, et al. iLoc-LncRNA: predict the subcellular location of LncRNAs by incorporeating octamer composition into general PseKNC[J]. Bioinformatics, 2018, 34(24): 4196-4204.
[13] [13] AHMAD A, LINH, SHATABDA S. Locate-R: Subcellular localization of long non-coding RNAs using nucleotide compositions[J]. Genomics, 2020, 112(3): 2583-2589.
[14] [14] Feng S, Liang Y, Du W, et al. LncLocation: efficient subcellular location prediction of long non-coding RNA-based multi-source heterogeneous feature fusion[J]. International Journal of Molecular Sciences, 2020, 21(19): 7271.
[15] [15] Lyu, J.; Zheng, P.; Qi, Y.; Huang, G. LightGBM-LncLoc: A LightGBM-Based Computational Predictor for Recognizing Long Non-Coding RNA Subcellular Localization. Mathematics 2023, 11, 602.
[16] [16] Fu X Z, Chen Y F, Tian S. DlncRNALoc: A discrete wavelet transform-based model for predicting lncRNA subcellular localization.[J]. Mathematical biosciences and engineering: MBE, 2023, 20(12): 20648-20667.
[17] [17] Zeng M, Wu Y, Lu C, et al. DeepLncLoc: a deep learning framework for long non-coding RNA subcellular localization prediction based on subsequence embedding[J]. Briefings in bioinformatics, 2022(1): 23.
[18] [18] WANG Y, ZHU X, YANG L, et al. IDDLncLoc: Subcellular Localization of LncRNAs Based on a Framework for Imbalanced Data Distributions[J]. Interdisciplinary Sciences: Computational Life Sciences, 2022, 14(2): 409-420.
[19] [19] CAI J., WANG T., DENG X. et al. GM-lncLoc: LncRNAs subcellular localization prediction based on graph neural network with meta-learning. MC Genomics 24, 52(2023).
[20] [20] DOUZAS G, BACAO F, LAST F. Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE[J]. Information Sciences, 2018, 465: 1-20.
[21] [21] Cao Z, Pan X Y, Yang Y, et al. Hong-Bin Shen, The IncLocator: a subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier, Bioinformatics, Volume 34, Issue 13, July 2018, Pages 2185-2194.
[22] [22] DAI Q, LIU X, YAO Y, et al. Numerical characteristics of word frequencies and their application to dissimilarity measure for sequence comparison[J]. J Theor Biol, 2011, 276(1): 174-180.
[25] [25] FAN Y, CHEN M, ZHU Q. lncLocPred: Predicting LncRNA Subcellular Localization Using Multiple Sequence Feature lnformation[J]. IEEE Access, 2020, 8: 124702-124711.
[26] [26] YANG X F, ZHOU Y K, ZHANG L, et al. Predicting LncRNA Subcellular Localization Using Unbalanced Pseudo-k Nucleotide Compositions[J]. Current Bio -informatics, 2020, 15(6): 554-562.
[27] [27] Gayatri E, Aarthy L S. Reduction of overfitting on the highly imbalanced ISIC-2019 skin dataset using deep learning frameworks.[J]. Journal of X-ray science and technology, 2023.
[28] [28] CHEN T, XU R F, HE Y L, et al. Improving sentiment analysis via sentence type classification using BiLSTM -CRF and CNN[J]. Expert Systems with Applications, 2017, 72: 221-230
[29] [29] SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[J]. Advances in neural information processing systems, 2017, 30.
[31] [31] Tjoa E, Guan C. A survey on explainable artificial intelligence (xai): Toward medical xai[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(11): 4793-4813.
[32] [32] Arrieta A B, Diaz-Rodrguez N, Del Ser J, et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward re -sponsible Al[J]. Information Fusion, 2020, 58: 82-115.
[33] [33] KIM B, DOSHI-VELEZ F. Interpretable machine learning: the fuss, the concrete and the questions[C]//Proceedings of the 32nd International Conference on Machine Learning. New York: JMLR. org, 2017: 1-13
[34] [34] Mohamed R, M. A S, M. A. A modified Adam algorithm for deep neural network optimization[J]. Neural Computing and Applications, 2023, 35(23): 17095-17112.
Get Citation
Copy Citation Text
SUN Rongneng, LIU Lin, KANG Yuanzhao. Attentional BiLSTM and prototype networks for lncRNA subcellular localization prediction[J]. Computer Engineering, 2025, 51(8): 168
Category:
Received: --
Accepted: Aug. 26, 2025
Published Online: Aug. 26, 2025
The Author Email: LIU Lin (liulinrachel@163.com)