Journal of Quantum Optics, Volume. 28, Issue 2, 158(2022)

Mode Analysis of Hybrid Nanoparallel Wire Waveguides Based on Graphene Surface Plasmons

LI Ning1、*, XUE Wen-rui11, DONG Hui-ying1, LI Hui-hui1, and LI Chang-yong2,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(29)

    [1] [1] BARNES W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830. DOI: 10.1038/nature01937.

    [2] [2] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2003, 438(7065): 197-200. DOI: 10.1038/nature04233.

    [3] [3] CHRISTENSEN J, MANJAVACAS A, THONGRATTANASIRI S, et al. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons[J]. ACS Nano, 2012, 6(1): 431-440. DOI: 10.1021/nn2037626.

    [4] [4] JU L, GENG B S, HORNG J, et al. Graphene plasmonics for tunable terahertz,metamaterials[J]. Nature Nanotechnology, 2011, 6(10): 630-634. DOI: 10.1038/NNANO.2011.146.

    [5] [5] JABLAN M, BULJAN H, SOLJAI H. Plasmonics in graphene at infrared frequencies[J]. Phys Rev B, 2009, 80(24): 245435.

    [6] [6] LIU P H, ZHANG X Z, MA Z H, et al. Surface plasmon modes in graphene wedge and groove waveguides[J]. Opt Express, 2013, 21(26): 32432-32440. DOI: 10.1364/OE.21.032432.

    [7] [7] GAO Y X, REN G B, ZHU B F, et al. Single-mode graphene-coated naplasmonic waveguide[J]. Opt Lett, 2014, 39(20): 5909-5912. DOI: 10.1364/OL.39.005909.

    [8] [8] GAO Y X, REN G B, ZHU B F, et al. Analytical model for plasmon modes in graphene-coated nanowire[J]. Opt Express, 2014, 22(20): 24322-24331. DOI: 10.1364/OE.22.024322.

    [10] [10] HUANG Y X, ZHANG L, YIN H, et al. Graphene-coated nanowires with a drop-shaped cross section for 10 nm confinement and 1 mm propagation[J]. Opt Lett, 2017, 42(11): 2078-2081. DOI: 10.1364/OL.42.002078.

    [11] [11] CONG X, HUANG Y X, ZHANG M, et al. Graphene-coated nanowires with drop-shaped cross section for the low loss propagation of THz waves with sub-micron mode widths[J]. Laser Phys Lett, 2018, 15(9): 096001.

    [12] [12] YANG J F, YANG J J, DENG W, et al. Transmission properties and molecular sensing application of CGPW[J]. Opt Express, 2015, 23(25): 32289-32299. DOI: 10.1364/OE.23.032289

    [13] [13] LIU J P, ZHAI X, WANG L L, et al. Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide[J]. Plasmonics, 2015, 11(3): 703-711. DOI: 10.1007/s11468-015-0095-z.

    [14] [14] LIU J P, ZHAI X, XIE F, et al. Analytical model of mid-infrared surface plasmon modes in a cylindrical long-range waveguide with double-layer graphene[J]. J Lightwave Technology, 2017, 35(10): 1971-1979. DOI: 10.1109/JLT.2016.2645239.

    [15] [15] XING R, JIAN S S. Numerical analysis on tunable multilayer nanoring waveguide[J]. IEEE Photo Techno Lett, 2017, 29(12): 967-970. DOI: 10.1109/LPT.2017.2700539.

    [16] [16] CHENG X, XUE W R, WEI Z Z, et al. Mode analysis of a confocal elliptical dielectric nanowire coated with double-layer grapheme[J]. Opt Communications, 2019, 452: 467-475. DOI: 10.1016/j.optcom.2019.07.067.

    [17] [17] XING R, JIAN S S. The graphene square waveguide with small normalized mode area[J]. IEEE Photo Techno Lett, 2017, 29(19): 1643-1646. DOI: 10.1109/LPT.2017.2743014.

    [18] [18] ZHU B F, REN G B, YANG Y, et al. Field enhancement and gradient force in the graphene-coated nanowire pairs[J]. Plasmonics, 2014, 10(4): 839-845. DOI: 10.1007/s11468-014-9871-4.

    [19] [19] YE S, WANG Z X, SUN C R, et al. Plasmon-phonon-polariton modes and field enhancement in the graphene-coated hexagon boron nitride nanowire pairs[J]. Opt Express, 2018, 26(18): 23854-23867. DOI: 10.1364/OE.26.023854.

    [22] [22] WU D, TIAN J P. Study on the plasmonic characteristics of bow-tie type graphene-coated nanowire pair[J]. Optik, 156: 689-695. DOI: 10.1016/j.ijleo.2017.12.003.

    [23] [23] XING R, JIAN S S. Numerical analysis on the multilayer nanoring waveguide pair[J]. IEEE Photo Techno Lett, 2016, 28(24): 2779-2782. DOI: 10.1109/LPT.2016.2623274.

    [24] [24] WANG X, WANG J, MA T, et al. Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition[J]. Chinese Physics B, 2021, 30(1):014207. DOI: 10.1088/1674-1056/abb65c.

    [25] [25] TENG D, WANG Y, XU T, et al. Symmetric Graphene Dielectric Nanowaveguides as Ultra-Compact Photonic Structures[J]. Nanomaterials, 2021, 11(5): 1281. DOI: 10.3390/nano11051281.

    [27] [27] NIKITIN A Y, GUINEA F, GARCIA-VIDAL F J, et al. Fields radiated by a nanoemitter in a graphene sheet [J]. Phys Rev B, 2011, 84(19): 195446. DOI: 10.1103/PhysRevB.84.195446.

    [28] [28] CHEN B, MENG C, YANG Z, et al. Graphene coated ZnO nanowire optical waveguides[J]. Optics Express, 2014, 22(20): 24276-24285. DOI: 10.1364/OE.22.024276.

    [29] [29] CHEN K, ZHOU X, CHENG X, et al. Graphene photonic crystal fibre with strong and tunable light-matter interaction[J]. Nature Photonics, 2019, 13(11): 754-759. DOI: 10.1038/s41566-019-0492-5.

    [30] [30] HE X, NING T, LU S, et al. Ultralow loss graphene-based hybrid plasmonic waveguide with deep-subwavelength confinement[J]. Opt Express, 2018, 26(8): 10109-10118. DOI: 10.1364/OE.26.010109.

    [31] [31] HAJATI M, HAJATI Y. Deep subwavelength confinement of mid-infrared plasmon modes by coupling graphene-coated nanowire with a dielectric substrate[J]. Plasmonics, 2018, 13(2): 403-412. DOI:10.1007/s11468-017-0524-2.

    [32] [32] TENG D, WANG K, HUAN Q, et al. High-performance light transmission based on graphene plasmonic waveguides[J]. Journal of Materials Chemistry C, 2020, 8(20): 6832-6838. DOI:10.1039/d0tc01125h.

    [33] [33] VAKIL A, ENGHETA N. Transformation Optics Using Graphene[J]. Science, 2011, 332(6035): 1291-1294.

    Tools

    Get Citation

    Copy Citation Text

    LI Ning, XUE Wen-rui1, DONG Hui-ying, LI Hui-hui, LI Chang-yong. Mode Analysis of Hybrid Nanoparallel Wire Waveguides Based on Graphene Surface Plasmons[J]. Journal of Quantum Optics, 2022, 28(2): 158

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 11, 2021

    Accepted: --

    Published Online: Oct. 14, 2022

    The Author Email: LI Ning (775663822@qq.com)

    DOI:10.3788/jqo20222802.0701

    Topics