Laser & Infrared, Volume. 54, Issue 6, 852(2024)
Development and stability test of movable ultra-stable optical cavity
[1] [1] Edward G M, Hutson R B, Akihisa G, et al. Imaging optical frequencies with 100 Hz precision and 1.1 m resolution[J]. Physical Review Letters, 2018, 120(10): 103201.
[2] [2] Brown R C, Phillips N B, Beloy K, et al. Hyperpolarizability and operational magic wavelength in an optical lattice clock[J]. American Physical Society, 2017, 119(25): 253001.
[3] [3] Huntemann N, Sanner C, Lipphardt B, et al. Single-ion atomic clock with 3 × 10-18 systematic uncertainty[J]. Physical Review Letters, 2016, 116(6): 063001.
[4] [4] Barwood G P, Huang G, Klein H A, et al. Agreement between two 88Sr+ optical clocks to 4 parts in 1017[J]. Physical Review A, 2014, 89(5): 050501.
[5] [5] Sesana A, Gair J, Berti E, et al. Reconstructing the massive black hole cosmic history through gravitational waves[J]. Physical Review D, 2011, 83(4): 044036.
[6] [6] Rosenband T, Hume D B, Schmidt P O, et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place[J]. Science, 2008, 319(5871): 1808-1812.
[7] [7] Ludlow A D, Boyd MM, Ye J, et al. Optical atomic clocks[J]. Review of Modern Physics, 2014, 87(2): 637.
[8] [8] Leibrandt D R, Thorpe M J, Notcutt M, et al. Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments[J]. Optics Express, 2011, 19(4): 3471-3482.
[9] [9] Kessler T, Hagemann C, Grebing C, et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 2012, 6(10): 687-692.
[10] [10] Bishof M, Martin M J, Swallows M D, et al. Inelastic collisions and density-dependent excitation suppression in a 87Sr optical lattice clock[J]. Physical Review A, 2011, 84(5): 052716.
[11] [11] Cole G D, Zhang W, Martin M J, et al. Tenfold reduction of Brownian noise in optical interferometry[J/OL]. http://arxiv.org/pdf/1302.64898.
[12] [12] Christian, Hagemann, Grebing, et al. Ultrastable laser with average fractional frequency drift rate below 5 × 10-19/s[J]. Optics Letters, 2014, 39(17): 5102-5105.
[13] [13] Wu L, Jiang Y, Ma C, et al.0.26 Hz-linewidth ultrastable lasers at 1557nm[J]. Scientific Reports, 2016, 6(1): 24969.
[14] [14] Hu S G, Qiao G C, Liu Y A, et al. Erratum: an improved memristor model connecting plastic synapse and nonlinear spiking neuron[J]. Journal of Physics: D Applied Physics, 2019, 52: 275402.
[15] [15] Kleppner D. Time too good to be true[J]. Physics Today, 2006, 59(3): 10-11.
[16] [16] Schiller S, Tino G M, Gill P, et al. Einstein gravity explorer-a medium-class fundamental physics mission[J]. Experimental Astronomy, 2009, 23(2): 573-610.
[17] [17] Wolf P, Ch. J. Bord, Clairon A, et al. Quantum physics exploring gravity in the outer solar system: the sagas project[J]. Experimental Astronomy, 2009, 23(2): 651-687.
[18] [18] Leibrandt D R, Thorpe M J, Notcutt M, et al. Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments[J]. Optics Express, 2011, 19(4): 3471-3482.
[19] [19] Thompson R, Vine G D, Klipstein W M, et al. A flight-like optical reference cavityfor GRACE follow-on laser frequency stabilization[C]//Frequency Control & the European Frequency & Time Forum. IEEE, 2011.
[20] [20] Argence B, Prevost E, Lvque T, et al. Prototype of an ultra-stable optic cavity for space applications[J]. Optics Express, 2012, 20(23): 25409.
[21] [21] Chen Q F, Nevsky A, Cardace M, et al. A compact, robust, and transportable ultra-stable laser with a fractional frequency instability of 1 × 10-15[J]. Review of Scientific Instruments, 2014, 85(11): 113107.
[22] [22] Jiao D, Xu G, Gao J, et al. A portable sub-Hertz ultra-stable laser over 1700km highway transportation[J/OL]. http://arxiv.org/Vc/arxiv/papers/2023/2203.1127vl.pdf.
[23] [23] Kogelnik H, Li T. Laser beams and resonators[J]. Proceedings of the IEEE, 2005, 54(10): 1312-1329.
[24] [24] Huang S, Zhu T, CaoZ, et al. Laser linewidth measurement based on amplitude difference comparison of coherent envelope[J]. IEEE Photonics Technology Letters, 2016, 28(7): 759-762.
[25] [25] Huang S, Zhu T, LiuM, et al. Precise measurement of ultra-narrow laser linewidths using the strong coherent envelope[J]. Scientific Reports, 2017, 7: 41988.
[26] [26] Richter L, Mandelberg H, Kruger M, et al. Linewidth determination from self-heterodyne measurements with subcoherence delay times[J]. IEEE J Quantum Electron, 1986, 22(11): 2070-2074.
[27] [27] Mercer L B. 1/f frequency noise effects on self-heterodyne linewidth measurements[J]. Journal of Lightwave Technology, 1991, 9(4): 485-493.
[28] [28] Chen M, Meng Z, Wang J, et al. Ultra-narrow linewidth measurement based on Voigt profile fitting[J]. Optics Express, 2015, 23(5): 6803-6808.
[29] [29] Ludvigsen H, Tossavainen M, Kaivola M. Laser linewidth measurements using self-homodyne detection with short delay[J]. Optics Communications, 1998, 155(1-3): 180-186.
Get Citation
Copy Citation Text
GAO Bei, JIANG Yuan, PENG Wen-xin, LI Song-nong, DING Hui, SU Dian-qiang, JI Zhong-hua, ZHAO Yan-ting. Development and stability test of movable ultra-stable optical cavity[J]. Laser & Infrared, 2024, 54(6): 852
Category:
Received: Nov. 10, 2023
Accepted: May. 21, 2025
Published Online: May. 21, 2025
The Author Email: JI Zhong-hua (jzh@sxu.edu.cn)