Journal of Infrared and Millimeter Waves, Volume. 42, Issue 4, 538(2023)

Sub-pixel mapping based on spectral information of irregular scale areas for hyperspectral images

Peng WANG1,2,3, Yong-Kang CHEN3, Gong ZHANG3, Hong-Ying WANG4, Chun-Lei ZHAO5, and Ling HAN6、*
Author Affiliations
  • 1Key Laboratory of Southeast Coast Marine Information Intelligent Perception and Application,Ministry of Natural Resources,Zhangzhou Institute of Surveying and Mapping,Zhangzhou 363000,China
  • 2Anhui Province Key Laboratory of Physical Geographic Environment,Chuzhou University,Chuzhou 239000,China
  • 3College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
  • 4School of Management,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
  • 5Key Laboratory of Meteorology and Ecological Environment of Hebei Province,Meteorological Institute of Hebei,Shijiazhuang 050021,China
  • 6Xi’an Key Laboratory of Territorial Spatial Information,Chang'an University,Xi’an 710064,China
  • show less
    Figures & Tables(14)
    Spatial information in(a)the rectangular local window and(b)the irregular scale areas
    The flowchart of SIISA
    Multispectral images covering Rome, Italy,(a)RGB of multispectral image,(b)coarse image(S=8)
    Hyperspectral images covering University of Pavia, Italy,(a)RGB of hyperspectral image,(b)coarse image(S=8)
    Hyperspectral images covering Xiong'an New Area, China,(a)RGB of hyperspectral image,(b)coarse image(S=10)
    Mapping results,(a)reference image,(b)SSI,(c)PSSD,(d)OSI,(e)RWA,(f)SIISA
    Mapping results,(a)reference image,(b)SSI,(c)PSSD,(d)OSI,(e)RWA,(f)SIISA
    Mapping results,(a)reference image,(b)SSI,(c)PSSD,(d)OSI,(e)RWA,(f)SIISA
    Salient region,(a)reference image,(b)SSI,(c)PSSD,(d)OSI,(e)RWA, and(f)SIISA
    Values of(a)OA(%)and(b)Kappa obtained using the five different sub-pixel methods under different values of S
    OA(%)value of the SIISA in relation to weight parameter β in(a)experiments 2 and(b)3
    OA(%)value of the SIISA in relation to segmentation scale parameter V in(a)experiments 2 and(b)3
    • Table 1. Accuracy evaluation of the five methods

      View table
      View in Article

      Table 1. Accuracy evaluation of the five methods

      ClassSSIPSSDOSIRWASIISA
      Vegetation(%)66.9969.2871.2073.3974.88
      Building(%)76.0674.2778.2680.7284.31
      Soil(%)61.6664.4567.4469.6471.37
      OA(%)70.1071.4573.7376.0578.67
      Kappa0.525 00.545 50.583 00.622 50.656 6
    • Table 2. Accuracy evaluation of the five methods

      View table
      View in Article

      Table 2. Accuracy evaluation of the five methods

      ClassSSIPSSDOSIRWASIISA
      Shadow(%)49.2355.5657.4460.2961.94
      Water(%)96.8596.6897.0197.2897.77
      Road(%)64.9962.0868.6470.3778.39
      Tree(%)75.1175.9678.7080.2584.04
      Grass(%)71.0074.3375.4978.3979.87
      Rooftop(%)76.3278.8780.5983.0683.62
      OA(%)77.9478.8881.1583.1985.22
      Kappa0.726 50.738 70.765 90.797 70.815 7
    Tools

    Get Citation

    Copy Citation Text

    Peng WANG, Yong-Kang CHEN, Gong ZHANG, Hong-Ying WANG, Chun-Lei ZHAO, Ling HAN. Sub-pixel mapping based on spectral information of irregular scale areas for hyperspectral images[J]. Journal of Infrared and Millimeter Waves, 2023, 42(4): 538

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jul. 12, 2022

    Accepted: --

    Published Online: Aug. 1, 2023

    The Author Email: Ling HAN (hanling@chd.edu.cn)

    DOI:10.11972/j.issn.1001-9014.2023.04.001

    Topics