Opto-Electronic Engineering, Volume. 51, Issue 9, 240142-1(2024)
Dual low-light images combining color correction and structural information enhance
[1] Lan R S, Sun L, Liu Z B et al. MADNet: a fast and lightweight network for single-image super resolution[J]. IEEE Trans Cybern, 51, 1443-1453(2021).
[2] Lin J P, Liao L Z, Lin S L et al. Deep and adaptive feature extraction attention network for single image super-resolution[J]. J Soc Inf Disp, 32, 23-33(2024).
[3] Xu S J, Yang H, Li M H et al. Low-light image enhancement based on dual-frequency domain feature aggregation[J]. Opto-Electron Eng, 50, 230225(2023).
[4] Liu G H, Yang Q, Meng Y B et al. A progressive fusion image enhancement method with parallel hybrid attention[J]. Opto-Electron Eng, 50, 220231(2023).
[6] Lore K G, Akintayo A, Sarkar S. LLNet: a deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognit, 61, 650-662(2017).
[7] Wei C, Wang W J, Yang W H et al. Deep retinex decomposition for low-light enhancement[C], 155(2018).
[8] Guo X J, Li Y, Ling H B. LIME: low-light image enhancement via illumination map estimation[J]. IEEE Trans Image Process, 26, 982-993(2017).
[9] Gong Y F, Liao P Y, Zhang X D et al. Enlighten-GAN for super resolution reconstruction in mid-resolution remote sensing images[J]. Remote Sens, 13, 1104(2021).
[13] Lin J P, Wang D, Xiao Z Y et al. Minimum spanning tree segmentation and extract with image edge weight optimization[J]. J Electron Inf Technol, 45, 1494-1504(2023).
[14] Cheng D Q, You Y Y, Kou Q Q et al. A generative adversarial network incorporating dark channel prior loss used for single image defogging[J]. Opto-Electron Eng, 49, 210448(2022).
[15] Liu H X, Lin S L, Lin Z X et al. Lightweight underwater image enhancement network based on GAN[J]. Chin J Liq Cryst Disp, 38, 378-386(2023).
[18] Joshy A A, Rajan R. Dysarthria severity assessment using squeeze-and-excitation networks[J]. Biomed Signal Process Control, 82, 104606(2023).
[19] Zhang S, Liu Z W, Chen Y P et al. Selective kernel convolution deep residual network based on channel-spatial attention mechanism and feature fusion for mechanical fault diagnosis[J]. ISA Transactions, 133, 369-383(2023).
[20] Ponomarenko N, Silvestri F, Egiazarian K et al. On between-coefficient contrast masking of DCT basis functions[C], 1-4(2007).
[21] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans Image Process, 13, 600-612(2004).
[23] Zhang L, Zhang L, Bovik A C. A feature-enriched completely blind image quality evaluator[J]. IEEE Trans Image Process, 24, 2579-2591(2015).
[24] Hai J, Xuan Z, Yang R et al. R2RNet: low-light image enhancement via real-low to real-normal network[J]. J Vis Commun Image Represent, 90, 103712(2023).
[26] Ma K D, Zeng K, Wang Z. Perceptual quality assessment for multi-exposure image fusion[J]. IEEE Trans Image Process, 24, 3345-3356(2015).
[27] Wang S H, Zheng J, Hu H M et al. Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE Trans Image Process, 22, 3538-3548(2013).
Get Citation
Copy Citation Text
Shanling Lin, Yan Chen, Xue Zhang, Zhixian Lin, Jianpu Lin, Shanhong Lv, Tailiang Guo. Dual low-light images combining color correction and structural information enhance[J]. Opto-Electronic Engineering, 2024, 51(9): 240142-1
Category: Article
Received: Jun. 17, 2024
Accepted: Aug. 18, 2024
Published Online: Dec. 12, 2024
The Author Email: