Journal of the Chinese Ceramic Society, Volume. 50, Issue 4, 1063(2022)

Preparation Method of Bioactive Glasses

WANG Endian*, WEI Ziqin, LI Qin, and CHANG Jiang
Author Affiliations
  • [in Chinese]
  • show less
    References(75)

    [1] [1] HENCH L L. BIoceramics-from concept to clinic[J]. J Am Ceram Soc,1991, 74(7): 1487-1510.

    [2] [2] HENCH L L. Bioceramics[J]. J Am Ceram Soc, 1998, 81(7):1705-1728.

    [3] [3] HENCH L L. The story of Bioglass (R)[J]. J Mater Sci-Mater Med,2006, 17(11): 967-978.

    [4] [4] HENCH L L, POLAK J M. Third-generation biomedical materials[J].Science, 2002, 295(5557): 1014-1017.

    [5] [5] DI Z, WENHAI H. Advance in research on bioactive glass composites for bone repair[J]. J Funct Mater, 2008, 39(3): 353-354.

    [6] [6] HUANG Y, LI L, SHI Z, et al. Application and research status of bioactive glass in bone repair[J]. Chin J Reparative Reconstr Surgery 2020, 34(5): 660-666.

    [7] [7] JIANG D, JIA W, ZHANG C. Research and application progress of bioactive glass in bone repair[J]. Chin J Reparative Reconstr Surgery,2017, 31(12): 1512-1516.

    [8] [8] RAHAMAN M N, DAY D E, Bal B S, et al. Bioactive glass in tissue engineering[J]. Acta Biomater, 2011, 7(6): 2355-2373.

    [9] [9] VICHERY C, NEDELEC J M. Bioactive glass nanoparticles: From Synthesis to Materials Design for Biomedical Applications[J]. Materials, 2016, 9(4): 288.

    [10] [10] MIGUEZ-PACHECO V, HENCH L L, BOCCACCINI A R. Bioactive glasses beyond bone and teeth: Emerging applications in contact with soft tissues[J]. Acta Biomater, 2015, 13: 1-15.

    [11] [11] IBRAHIM N F, MOHAMAD H, NOOR S N F M, et al. Melt-derived bioactive glass based on SiO2-CaO-Na2O-P2O5 system fabricated at lower melting temperature[J]. J Alloys Compd, 2018, 732: 603-612.

    [12] [12] QIN X M, XIU Z M, ZUO L, et al. Law melting temperature machinable bioactive glass-ceramic[J]. J Inorg Mater, 2003, 18(6):1158-1162.

    [13] [13] KAUR G, PICKRELL G, SRIRANGANATHAN N, et al. Review and the state of the art: Sol-gel and melt quenched bioactive glasses for tissue engineering[J]. J Biomed Mater Res Part B-Appl Biomater, 2016,104(6): 1248-1275.

    [14] [14] BAINO F, FIUME E, MIOLA M, et al. Bioactive sol-gel glasses:Processing, properties, and applications[J]. Int J Appl Ceram Technol,2018, 15(4): 841-860.

    [15] [15] NAGRATH M, ALHALAWANI A, YAZDI A R, et al. Bioactive glass fiber fabrication via a combination of sol-gel process with electro-spinning technique[J]. Mater Sci Eng C-Mater Biologl Appl,2019, 101: 521-538.

    [16] [16] CHEN X F, YU-LI L I, ZHAO N R. Nano-structure analysis of the sol-gel derived bioactive glasses[J]. Bull Chin Ceram Soc, 2007, 26(2):247-251.

    [17] [17] JONES J R. Review of bioactive glass: From Hench to hybrids[J]. Acta Biomater, 2013, 9(1): 4457-4486.

    [18] [18] VALLET-REGI M, SALINAS A J, ARCOS D. From the bioactive glasses to the star gels[J]. J Mater Sci-Mater Med, 2006, 17(11):1011-1017.

    [19] [19] GENG X, LI D, ZHANG C. Research progress of functional coating deposited by liquid plasma spraying[J]. New Chem Mater, 2016, 44(4):26-28.

    [20] [20] MROZEK P. Bioactive glass particles field-assisted sealing to titanium implant glass-based coatings[J]. Surface Rev Lett, 2009, 16(1): 1-3.

    [21] [21] YADAV V S, SANKAR M R, PANDEY L M. Coating of bioactive glass on magnesium alloys to improve its degradation behavior:Interfacial aspects[J]. J Magnes Alloys, 2020, 8(4): 999-1015.

    [22] [22] MISRA S K, MOHN D, BRUNNER T J, et al. Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass (R) composites[J]. Biomaterials, 2008, 29(12):1750-1761.

    [23] [23] HONG Z, LIU A, CHEN L, et al. Preparation of bioactive glass ceramic nanoparticles by combination of sol-gel and coprecipitation method[J]. J Non-Cryst Solids, 2009, 355(6): 368-372.

    [24] [24] XIA W, CHANG J. Preparation and characterization of nano-bioactiveglasses(NBG) by a quick alkali-mediated sol-gel method[J]. Mater Lett, 2007, 61(14/15): 3251-3253.

    [25] [25] WANG B, WANG Y, YIN T, et al. Applications of electrospinning technique in drug delivery[J]. Cheml Eng Commun, 2010, 197(10):1315-1338.

    [26] [26] YE P, WEI S, WEI F. Progress of electrospinning drug-loaded fibers and application in transdermal drug delivery system[J]. Chin Pharm J,2019, 54(24): 2034-2042.

    [27] [27] HU X, LIU S, ZHOU G, et al. Electrospinning of polymeric nanofibers for drug delivery applications[J]. J Control Release, 2014,185: 12-21.

    [28] [28] WU X H, WANG L G, Huang Y. Application of electrospun ethyl cellulose fibers in drug release systems[J]. Acta Polym Sin, 2006(2):264-268.

    [29] [29] CUI C, ZHAO Y, YUAN X. Progresses on bioactive electrospun membranes for small-diameter vascular regeneration[J]. Polym Bull,2019(2): 9-15.

    [30] [30] GAO J, GUO H, TIAN S, et al. Preparation and mechanical performance of small-diameter PHBHHx vascular graft by electrospinning[J]. Int J Polym Mater Polym Biomater, 2019, 68(10):575-581.

    [31] [31] DELIORMANLI A M. Electrospun cerium and gallium-containing silicate based 13-93 bioactive glass fibers for biomedical applications[J]. Ceram Int, 2016, 42(1): 897-906.

    [32] [32] XIA W, ZHANG D M, CHANG J. Fabrication and in vitro biomineralization of bioactive glass (BG) nanofibres[J].Nanotechnology, 2007, 18(13): 5250-5257.

    [33] [33] BOONYANG U, LI F, STEIN A. Hierarchical structures and shaped particles of bioactive glass and its in vitro bioactivity[J]. J Nanomater,2013: 681391.

    [34] [34] CHAROENSUK T, SIRISATHITKUL C, BOONYANG U. Thermal analysis of mesoporous and macroporous bioactive glasses synthesized by sol-gel method[J]. Revista Romana De Materiale-Romanian J Mater,2013, 43(3): 320-325.

    [35] [35] CHAROENSUK T, SIRISATHITKUL C, BOONYANG U, et al.Effects of phase additions on three dimensionally ordered macroporous structure of SiO2-CaO-P2O5 bioactive glasses[J]. J Ceram Process Res,2016, 17(7): 742-746.

    [36] [36] XIA W, CHANG J. Well-ordered mesoporous bioactive glasses (MBG):A promising bioactive drug delivery system[J]. J Control Release, 2006,110(3): 522-530.

    [37] [37] XING M, HUAN Z, LI Q, et al. Containerless processing of Ca-Sr-Si system bioactive materials: Thermophysical properties and ion release behaviors[J]. Ceram Int, 2017, 43(6): 5156-5163.

    [38] [38] LI H, LI J, JIANG J, et al. An osteogenesis/angiogenesis-stimulation artificial ligament for anterior cruciate ligament reconstruction[J]. Acta Biomater, 2017, 54: 399-410.

    [39] [39] LI J, LV F, XU H, et al. A patterned nanocomposite membrane for high-efficiency healing of diabetic wound[J]. J Mater Chem B, 2017,5(10): 1926-1934.

    [40] [40] LI J, ZHAI D, LV F, et al. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis,antibacterial activity and wound healing[J]. Acta Biomater, 2016, 36:254-266.

    [41] [41] LI J Y, ZHAI D, LV F, et al. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis,antibacterial activity and wound healing[J]. Acta Biomater, 2016, 36:254-266.

    [42] [42] ZHANG Y, XIA L, ZHAI D, et al. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis[J]. Nanoscale, 2015, 7(45): 19207-19221.

    [43] [43] LI S M, LI J G, FU H Z. Containerless net shaping of liquid metals[J].Rare Metal Mater Eng, 1999, 28(1): 5-9.

    [44] [44] WEBER J K R. The containerless synthesis of glass[J]. Int J Appl Glass Sci, 2010, 1(3): 248-256.

    [45] [45] GAO J R, CAO C D, WEI B. Containerless processing of materials by acoustic levitation//SCHWABE D. Gravitational Effects in Mater Fluid Sci, 1999: 1293-1297.

    [46] [46] XIE W, WEI B. Latest progress in acoustic levitation[J]. Physics, 2002,31(9): 551-554.

    [47] [47] HU Liang, LU Xiaoyu, HOU Zhimin. Progress in electrostatic levitation technology[J]. Physics, 2007, 36(12): 944-950.

    [48] [48] GILLON P. Contactless processing of metallic materials by stabilized electromagnetic levitation[J]. Mate Transact Jim, 2000, 41(8):1000-1004.

    [49] [49] WANG Y Q , LI L , ZHOU J X , et al. Development of electromagnetic levitation melting and its application in analysis of gases in metals[J].Metall Anal, 2008, 28(11): 16-23.

    [50] [50] WU C T, ZHANG M H, ZHAI D, et al. Containerless processing for preparation of akermanite bioceramic spheres with homogeneous structure, tailored bioactivity and degradation[J]. J Mater Chem B,2013, 1(7): 1019-1026.

    [51] [51] MA L, ZHOU Y, ZHANG Z, et al. Multifunctional bioactive Nd-Ca-Si glasses for fluorescence thermometry, photothermal therapy, and burn tissue repair[J]. Sci Adv, 2020, 6(32): eabb1311.

    [52] [52] WANG E, LI X, ZHANG Y, et al. Multi-functional black bioactive glasses prepared via containerless melting process for tumor therapy and tissue regeneration[J]. Adv Funct Mater, 2021, 31(24): 2101505.

    [53] [53] WANG WEI, ZHANG MINGHUI, YU JIANDING, et al. Novel Materials Research Using Containerless Processi[J]. Mater Chin, 2017,36(12): 902-911.

    [54] [54] LI S, SONG C B, YANG S B, et al. Supercritical CO2 foamed composite scaffolds incorporating bioactive lipids promote vascularized bone regeneration via Hif-1 alpha upregulation and enhanced type H vessel formation[J]. Acta Biomater, 2019, 94:253-267.

    [55] [55] ZHANG X, JIA A, ZHAO X, et al. Bubble template methods for the synthesis of porous inorganic materials: A review[J]. J Chem Eng Chin Univ, 2018, 32(5): 983-993.

    [56] [56] XIA W, CHANG J. Bioactive glass scaffold with similar structure and mechanical properties of cancellous bone[J]. J Biomed Mater Res Part B-Appl Biomater, 2010, 95B(2): 449-455.

    [57] [57] UMRATH W. Principles of cryo-preparation method-freeze-drying and freeze-etching[J]. Mikroskopie, 1977, 33(1/2): 11-29.

    [58] [58] GAO C, GAO Q, BAO X, et al. Preparation and in vitro bioactivity of novel mesoporous borosilicate bioactive glass nanofibers[J]. J Am Ceram Soc, 2011, 94(9): 2841-2845.

    [59] [59] FENG C, ZHANG W, DENG C, et al. 3D printing of lotus root-like biomimetic materials for cell delivery and tissue regeneration[J]. Adv Sci, 2017, 4(12): 1700401.

    [60] [60] LI T, CHANG J, ZHU Y, et al. 3D Printing of bioinspired biomaterials for tissue regeneration[J]. Adv Healthcare Mater, 2020, 9(23):2000208.

    [61] [61] YANG C, WANG X, MA B, et al. 3D-printed bioactive Ca3SiO5 bone cement scaffolds with nano surface structure for bone regeneration[J].ACS Appl Mater Interfaces, 2017, 9(7): 5757-5767.

    [62] [62] YU X, WU C. Recent development on function improvements of 3D printed bioceramics[J]. J Chin Ceram Soc, 2021, 49(5): 829-843.

    [63] [63] SACHS E, CIMA M, WILLIAMS P, et al. 3-dimensional printingrapid tooling and prototypes directly from a cad model[J]. J Eng Ind-Transact Asme, 1992, 114(4): 481-488.

    [64] [64] HWA L C, RAJOO S, NOOR A M, et al. Recent advances in 3D printing of porous ceramics: A review[J]. Curr Opinion Solid State Mater Sci, 2017, 21(6): 323-347.

    [65] [65] LEWIS J A. Direct-write assembly of ceramics from colloidal inks[J].Curr Opinion Solid State Mater Sci, 2002, 6(3): 245-250.

    [66] [66] DANG W T, WANG X Y, LI J Y, et al. 3D printing of Mo-containing scaffolds with activated anabolic responses and bi-lineage bioactivities[J]. Theranostics, 2018, 8(16): 4372-4392.

    [67] [67] GAO L, YI M, XING M, et al. In situ activated mesenchymal stem cells (MSCs) by bioactive hydrogels for myocardial infarction treatment[J]. J Mater Chem B, 2020, 8(34): 7713-7722.

    [68] [68] ZHOU Y, GAO L, PENG J, et al. Bioglass activated albumin hydrogels for wound healing[J]. Adv Healthcare Mater, 2018, 7(16): 1800144.

    [69] [69] ZENG Q, DESAI M S, JIN H-E, et al. Self-healing elastin-bioglass hydrogels[J]. Biomacromolecules, 2016, 17(8): 2619-2625.

    [70] [70] GAO L, ZHOU Y, PENG J, et al. A novel dual-adhesive and bioactive hydrogel activated by bioglass for wound healing[J]. Npg Asia Mater,2019, 11: 66

    [71] [71] ZENG Q, HAN Y, LI H, et al. Design of a thermosensitive bioglass/agarose-alginate composite hydrogel for chronic wound healing[J]. J Mater Chem B, 2015, 3(45): 8856-8864.

    [72] [72] KONG L Z, WU Z, ZHAO H K, et al. Bioactive injectable hydrogels containing desferrioxamine and bioglass for diabetic wound healing[J].ACS Appl Mater Interfaces, 2018, 10(36): 30103-30114.

    [73] [73] XU H, LV F, ZHANG Y L, et al. Hierarchically micro-patterned nanofibrous scaffolds with a nanosized bio-glass surface for accelerating wound healing[J]. Nanoscale, 2015, 7(44): 18446-18452.

    [74] [74] GAO Y, CHANG J. Surface modification of bioactive glasses and preparation of PDLLA/bioactive glass composite films[J]. J Biomater Appl, 2009, 24(2): 119-138.

    [75] [75] BAO F, PEI G, WU Z C, et al. Bioactive self-pumping composite wound dressings with micropore array modified janus membrane for enhanced diabetic wound healing[J]. Adv Funct Mater, 2020, 30(49):2005422.

    Tools

    Get Citation

    Copy Citation Text

    WANG Endian, WEI Ziqin, LI Qin, CHANG Jiang. Preparation Method of Bioactive Glasses[J]. Journal of the Chinese Ceramic Society, 2022, 50(4): 1063

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Dec. 3, 2021

    Accepted: --

    Published Online: Nov. 13, 2022

    The Author Email: WANG Endian (1554243081@qq.com)

    DOI:10.14062/j.issn.0454-5648.20211051

    Topics