Journal of Quantum Optics, Volume. 30, Issue 4, 40601(2024)

Research on the Optical Lattice System of Ytterbium Atom Based on Cavity Enhancement

JIANG Zi-wen1,2, TANG Ying1,2, HUANG Pan1,2, WANG Bing1, ZHU Qiang1, and XIONG Zhuan-xian1、*
Author Affiliations
  • 1Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430071, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(51)

    [1] [1] LEMONDE P, WOLF P. Optical lattice clock with atoms confined in a shallow trap[J]. Physical Review A, 2005, 72(3): 033409. DOI: 10.1103/PhysRevA.72.033409.

    [2] [2] ITANO W M, BERGQUIST J C, BOLLINGER J J, et al. Quantum projection noise: Population fluctuations in two-level systems[J]. Physical Review A, 1993, 47(5): 3554‒3570. DOI: 10.1103/PhysRevA.47.3554.

    [3] [3] BOWDEN W, HOBSON R, HILL I R, et al. A pyramid MOT with integrated optical cavities as a cold atom platform for an optical lattice clock[J]. Scientific Reports, 2019, 9(1): 11704. DOI: 10.1038/s41598-019-48168-3.

    [4] [4] OELKER E, HUTSON R B, KENNEDY C J, et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks[J]. Nature Photonics, 2019, 13(10): 714‒719. DOI: 10.1038/s41566-019-0493-4.

    [5] [5] OHMAE N, TAKAMOTO M, TAKAHASHI Y, et al. Transportable strontium optical lattice clocks operated outside laboratory at the Level of 10−18 uncertainty[J]. Advanced Quantum Technologies, 2021, 4(8): 2100015. DOI: 10.1002/QUTE.202100015.

    [6] [6] ZHANG X, BELOY K, HASSAN Y S, et al. Subrecoil clock-transition laser cooling enabling shallow optical lattice clocks[J]. Physical Review Letters, 2022, 129(11): 113202. DOI: 10.1103/PHYSREVLETT.129.113202.

    [7] [7] TERRIEN J. News from the International Bureau of Weights and Measures[J]. Metrologia, 1967, 3(1): 23‒25. DOI: 10.1088/0026-1394/3/1/005.

    [8] [8] GILL P. When should we change the definition of the second[J]. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 2011, 369(1953): 4109‒4130. DOI: 10.1098/rsta.2011.0237.

    [9] [9] RIEHLE F, GILL P, ARIAS F, et al. The CIPM list of recommended frequency standard values: guidelines and procedures[J]. Metrologia, 2018, 55(2): 188‒200. DOI: 10.1088/1681-7575/aaa302.

    [10] [10] LUDLOW A D, BOYD M M, YE J. Optical atomic clocks[J]. Reviews of Modern Physics, 2015, 87(2): 637‒701. DOI: 10.1103/RevModPhys.87.637.

    [11] [11] KIM H, HEO M S, PARK C Y, et al. Absolute frequency measurement of the 171Yb optical lattice clock at KRISS using TAI for over a year[J]. Metrologia, 2021, 58(5): 055007. DOI: 10.1088/1681-7575/AC1950.

    [12] [12] HOBSON R, BOWDEN W, VIANELLO A, et al. A strontium optical lattice clock with 1 × 10−17 uncertainty and measurement of its absolute frequency[J]. Metrologia, 2020, 57(6): 065026. DOI: 10.1088/1681-7575/abb530.

    [13] [13] BOTHWELL T, KEDAR D, OELKER E, et al. JILA SrI optical lattice clock with uncertainty of 2.0 × 10−18 [J]. Metrologia, 2019, 56(6): 065004. DOI: 10.1088/1681-7575/ab4089.

    [14] [14] SCHWARZ R, DRSCHER S, MASOUDI A A, et al. Long term measurement of the Sr-87 clock frequency at the limit of primary Cs clocks[J]. Physical Review Research, 2020, 2(3): 033242. DOI: 10.1103/PHYSREVRESEARCH.2.033242.

    [15] [15] TARGAT R L, LORINI L, COQ Y L, et al. Experimental realization of an optical second with strontium lattice clocks[J]. Nature Communications, 2013, 4: 2109. DOI: 10.1038/ncomms3109.

    [16] [16] NEMITZ N, OHKUBO T, TAKAMOTO M, et al. Frequency ratio of Yb and Sr clocks with 5×10-17 uncertainty at 150 seconds averaging time[J]. Nature Photonics, 2016, 10(4): 258‒261. DOI: 10.1038/nphoton.2016.20.

    [17] [17] GREWAL M S, ANDREWS A P, BARTONE C G. Global Navigation Satellite Systems, Inertial Navigation, and Integration[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2020: 66‒95. DOI: 10.1002/9781119547860.

    [18] [18] SCHULDT T, GOHLKE M, OSWALD M, et al. Optical clock technologies for global navigation satellite systems[J]. GPS Solutions, 2021, 25(3): 83. DOI: 10.1007/S10291-021-01113-2.

    [19] [19] DESCHNES J D, SINCLAIR L C, GIORGETTA F R, et al. Synchronization of distant optical clocks at the femtosecond level[J]. Physical Review X, 2016, 6(2): 021016. DOI: 10.1103/PhysRevX.6.021016.

    [20] [20] DOW J M, NEILAN R E, RIZOS C. The international gnss service in a changing landscape of global navigation satellite systems[J]. Journal of Geodesy, 2009, 83(3‒4): 191‒198. DOI: 10.1007/s00190-008-0300-3.

    [21] [21] GIORGI1 G, SCHMIDT1 T D, TRAINOTTI C, et al. Advanced technologies for satellite navigation and geodesy[J]. Advances in Space Research, 2019, 64(6): 1256‒1273. DOI: 10.1016/j.asr.2019.06.010.

    [22] [22] SCHWARZ R, MASOUDI A A, DRSCHER S, et al. Towards an optical clock for space: Compact, high-performance optical lattice clock based on bosonic atoms[J]. Physical Review A, 2018, 98(5): 053443. DOI: 10.1103/PhysRevA.98.053443.

    [23] [23] DRINGSHOFF K, GUTSCH F B, SCHKOLNIK V, et al. Iodine frequency reference on a sounding rocket[J]. Physical Review Applied, 2019, 11(5): 054068. DOI: 10.1103/PhysRevApplied.11.054068.

    [24] [24] CHOU C W, HUME D B, ROSENBAND T, et al. Optical clocks and relativity[J]. Science, 2010, 329(5999): 1630‒1633. DOI: 10.1126/science.1192720.

    [25] [25] MCGREW W F, ZHANG X, FASANO R J, et al. Atomic clock performance enabling geodesy below the centimetre level[J]. Nature, 2018, 564(7734): 87‒90. DOI: 10.1038/s41586-018-0738-2.

    [26] [26] BONDARESCU R, SCHRER A, LUNDGREN A, et al. Ground-based optical atomic clocks as a tool to monitor vertical surface motion[J]. Geophysical Journal International, 2015, 202(3): 1770‒1774. DOI: 10.1093/gji/ggv246.

    [27] [27] GROTTI J, KOLLER S, VOGT S, et al. Geodesy and metrology with a transportable optical clock[J]. Nature Physics, 2018, 14(5): 437‒441. DOI: 10.1038/s41567-017-0042-3.

    [28] [28] BONGS K, SINGH Y. Earth-based clocks test general relativity[J]. Nature Photonics, 2020, 14(7): 408‒409. DOI: 10.1038/s41566-020-0654-5.

    [29] [29] DEREVIANKO A, POSPELOV M. Hunting for topological dark matter with atomic clocks[J]. Nature Physics, 2014, 10(12): 933‒936. DOI: 10.1038/nphys3137.

    [30] [30] WCISO P, ABLEWSKI P, BELOY K, et al. New bounds on dark matter coupling from a global network of optical atomic clocks[J]. Science Advances, 2018, 4(12): eaau4869. DOI: 10.1126/sciadv.aau4869.

    [31] [31] KOLKOWITZ S, PIKOVSKI I, LANGELLIER N, et al. Gravitational wave detection with optical lattice atomic clocks[J]. Physical Review D, 2016, 94(12): 124043. DOI: 10.1103/PhysRevD.94.124043.

    [32] [32] WCISO P, MORZYSKI P, BOBER M, et al. Experimental constraint on dark matter detection with optical atomic clocks[J]. Nature Astronomy, 2016, 1(1): 495‒545. DOI: 10.1038/s41550-016-0009.

    [33] [33] KENNEDY C J, OELKER E, ROBINSON J M, et al. Precision metrology meets cosmology: improved constraints on ultra-light dark matter from atom-cavity frequency comparisons[J]. Physical Review Letters, 2020, 125(20): 201302. DOI: 10.1103/PHYSREVLETT.125.201302.

    [34] [34] BOULDER, BELOY K, BODINE M I, et al. Frequency ratio measurements at 18-digit accuracy using an optical clock network[J]. Nature, 2021, 591(7851): 564‒569. DOI: 10.1038/S41586-021-03253-4.

    [35] [35] SU J F, WANG Q, WANG Q H, et al. Low-frequency gravitational wave detection via double optical clocks in space[J]. Classical and Quantum Gravity, 2018, 35(8): 085010. DOI: 10.1088/1361-6382/aab2eb.

    [36] [36] ARVANITAKI A, GRAHAM P W, HOGAN J M, et al. Search for light scalar dark matter with atomic gravitational wave detectors[J]. Physical Review D, 2018, 97(7): 075020. DOI: 10.1103/PhysRevD.97.075020.

    [37] [37] AGUILA R P, MAZZONI T, HU L, et al. Bragg gravity-gradiometer using the 1S0-3P1 intercombination transition of 88Sr[J]. New Journal of Physics, 2018, 20(4): 043002. DOI: 10.1088/1367-2630/aafa29.

    [38] [38] TINO G M, BASSI A, BIANCO G, et al. SAGE: A proposal for a space atomic gravity explorer[J]. The European Physical Journal D, 2019, 73(11): 1‒20. DOI: 10.1140/epjd/e2019-100324-6.

    [39] [39] SAFRONOVA M S, BUDKER D, DEMILLE D, et al. Search for new physics with atoms and molecules[J]. Reviews of Modern Physics, 2018, 90(2): 025008. DOI: 10.1103/revmodphys.90.025008.

    [40] [40] HU L, POLI N, SALVI L, et al. Atom interferometry with the Sr optical clock transition[J]. Physical Review Letters, 2017, 119(26): 263601. DOI: 10.1103/PhysRevLett.119.263601.

    [41] [41] ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6): 061102. DOI: 10.1103/PhysRevLett.116.061102.

    [42] [42] AOYAMA S, TAZAI R, ICHIKI K. Upper limit on the amplitude of gravitational waves around 0.1 Hz from the Global Positioning System[J]. Physical Review D, 2014, 89(6): 067101. DOI: 10.1103/PhysRevD.89.067101.

    [43] [43] KONOPLIV A S, ASMAR S W, CARRANZA E, et al. Recent gravity models as a result of the lunar prospector mission[J]. Icarus, 2000, 150(1): 1‒18. DOI: 10.1006/icar.2000.6573.

    [44] [44] DICKE R H. The effect of collisions upon the Doppler width of spectral lines[J]. Physical Review, 1953, 89(2): 472‒473. DOI: 10.1103/PhysRev.89.472.

    [45] [45] KATORI H, TAKAMOTO M, PAL'CHIKOV V G, et al. Ultrastable optical clock with neutral atoms in an engineered light shift trap[J]. Physical Review Letters, 2003, 91(17): 173005. DOI: 10.1103/PhysRevLett.91.173005.

    [46] [46] DEHMELT H G. Monoion oscillator as potential ultimate laser frequency standard[J]. IEEE Transactions on Instrumentation and Measurement, 1982, 31(2): 83‒87. DOI: 10.1109/TIM.1982.6312526.

    [47] [47] GUO K, WANG G F, YE A P. Dipole polarizabilities and magic wavelengths for a Sr and Yb atomic optical lattice clock[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43(13): 135004. DOI: 10.1088/0953-4075/43/13/135004.

    [48] [48] TAKAMOTO M, USHIJIMA I, OHMAE N, et al. Test of general relativity by a pair of transportable optical lattice clocks[J]. Nature Photonics, 2020, 14(7): 411‒415. DOI: 10.1038/s41566-020-0619-8.

    [49] [49] BOTHWE T, KENNEDY C J, AEPPLI A, et al. Resolving the gravitational redshift across a millimetre-scale atomic sample[J]. Nature, 2022, 602(7897): 420‒424. DOI: 10.1038/S41586-021-04349-7.

    [50] [50] WANG C Y, YAO Y, SHI H R, et al. A Yb optical clock with a lattice power enhancement cavity[J]. Chinese Physics B, 2024, 33(3): 030601. DOI: 10.1088/1674-1056/AD1986.

    [51] [51] SAVARD T A, OHARA K M, THOMAS J E. Laser-noise-induced heating in far-off resonance optical traps[J]. Physical Review A, 1997, 56(2): R1095. DOI: 10.1103/PhysRevA.56.R1095.

    Tools

    Get Citation

    Copy Citation Text

    JIANG Zi-wen, TANG Ying, HUANG Pan, WANG Bing, ZHU Qiang, XIONG Zhuan-xian. Research on the Optical Lattice System of Ytterbium Atom Based on Cavity Enhancement[J]. Journal of Quantum Optics, 2024, 30(4): 40601

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 9, 2024

    Accepted: Feb. 26, 2025

    Published Online: Feb. 26, 2025

    The Author Email: XIONG Zhuan-xian (zxxiong@apm.ac.cn)

    DOI:10.3788/jqo20243004.0601

    Topics