Journal of Synthetic Crystals, Volume. 50, Issue 7, 1183(2021)

Long-Lived Lithium Niobate: History and Progress

GAO Bofeng*... REN Mengxin, ZHENG Dahuai, WU Wei, CAI Wei, SUN Jun, KONG Yongfa and XU Jingjun |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(159)

    [3] [3] VOLK T, WHLECKE M. Lithium niobate: defects, photorefraction and ferroelectric switching[M]. Berlin: Springer-Verlag Berlin Heidelberg, 2008

    [4] [4] WEIS R S, GAYLORD T K. Lithium niobate: summary of physical properties and crystal structure[J]. Applied Physics A, 1985, 37(4): 191-203.

    [5] [5] KONG Y F, LIU S G, XU J J. Recent advances in the photorefraction of doped lithium niobate crystals[J]. Materials, 2012, 5(10): 1954-1971.

    [8] [8] POBERAJ G, HU H, SOHLER W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices[J]. Laser & Photonics Reviews, 2012, 6(4): 488-503.

    [9] [9] KONG Y F, BO F, WANG W W, et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 2020, 32(3): 1806452.

    [10] [10] LIN J T, BO F, CHENG Y, et al. Advances in on-chip photonic devices based on lithium niobate on insulator[J]. Photonics Research, 2020, 8(12): 1910-1936.

    [11] [11] ZACHARIASEN W H. Untersuchungen über Die Kristallstrukturen von Sesquioxiden und Verbindungen ABO3[J]. Geologiska Freningen i Stockholm Frhandlingar, 1929, 51(1): 123.

    [12] [12] SRINIVASAN N R. Studies on niobium and tantalum[J]. Proceedings of the Indian Academy of Sciences - Section A, 1950, 31(5): 300-316.

    [13] [13] SNCHEZ-DENA O, FIERRO-RUIZ C D, VILLALOBOS-MENDOZA S D, et al. Lithium niobate single crystals and powders reviewed—part I[J]. Crystals, 2020, 10(11): 973.

    [14] [14] MATTHIAS B T, REMEIKA J P. Ferroelectricity in the ilmenite structure[J]. Physical Review, 1949, 76(12): 1886-1887.

    [15] [15] MATTHIAS B T. Ferroelectricity[J]. Science, 1951, 113(2943): 591-596.

    [17] [17] OHLWILER R W. High temperature ferroelectric materials[R]. PN, 1964.

    [18] [18] BALLMAN A A. Growth of piezoelectric and ferroelectric materials by the CzochraIski technique[J]. Journal of the American Ceramic Society, 1965, 48(2): 112-113.

    [19] [19] FEDULOV S A, SHAPIRO I, LADYZHENSKI P B. Application of Czochralski method for growth of LiNbO3, LiTaO3, and NaNbO3 single crystals[J]. Kristallografiya, 1965, 10(2): 268-9.

    [20] [20] WARNER J, ROBERTSON D S, HULME K F. The temperature dependence of optical birefringence in lithium niobate[J]. Physics Letters, 1966, 20(2): 163-164.

    [21] [21] BOYD G D, MILLER R C, NASSAU K, et al.LiNbO3: an efficient phase matchable nonlinear optical material[J]. Applied Physics Letters, 1964, 5(11): 234-236.

    [22] [22] NASSAU K, LEVINSTEIN H J, LOIACONO G M. The domain structure and etching of ferroelectric lithium niobate[J]. Applied Physics Letters, 1965, 6(11): 228-229.

    [23] [23] NASSAU K, LEVINSTEIN H J. Ferroelectric behavior of lithium niobate[J]. Applied Physics Letters, 1965, 7(3): 69-70.

    [24] [24] WYCKOFF R W G. Crystal structures[M]. New York: Interscience, 1951.

    [25] [25] MEGAW H D. Ferroelectricity and crystal structure.Ⅱ[J]. Acta Crystallographica, 1954, 7(2): 187-194.

    [26] [26] SPEAKMAN J C, ABRAHAMS S C, MEGAW H D. Crystallography[J]. Annual Reports on the Progress of Chemistry, 1956, 53: 383.

    [27] [27] SHIOZAKI Y, MITSUI T. Powder neutron diffraction study of LiNbO3[J]. Journal of Physics and Chemistry of Solids, 1963, 24(8): 1057-1061.

    [28] [28] ABRAHAMS S C, REDDY J M, BERNSTEIN J L. Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24 ℃[J]. Journal of Physics and Chemistry of Solids, 1966, 27(6/7): 997-1012.

    [29] [29] ABRAHAMS S C, HAMILTON W C, REDDY J M. Ferroelectric lithium niobate. 4. Single crystal neutron diffraction study at 24 ℃[J]. Journal of Physics and Chemistry of Solids, 1966, 27(6/7): 1013-1018.

    [30] [30] ABRAHAMS S C, LEVINSTEIN H J, REDDY J M. Ferroelectric lithium niobate. 5. Polycrystal X-ray diffraction study between 24° and 1 200 ℃[J]. Journal of Physics and Chemistry of Solids, 1966, 27(6/7): 1019-1026.

    [31] [31] NYE J F. Physical properties of crystals (Clarendon Press, Oxford, 1957)[M]. Oxford: Clarendon Press, 1957

    [33] [33] ZHONG G G, JIN J, WU Z K. Measurements of optically induced refractive-index damage of lithium niobate doped with different concentrations of MgO[J]. 11th International Quantum Electronics Conference, 1980: 631.

    [34] [34] FENG D, MING N B, HONG J F, et al. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains[J]. Applied Physics Letters, 1980, 37(7): 607-609.

    [35] [35] HAMAGUCHI C, Quantum Structures. InBasic Semiconductor Physics[M]. Springer Berlin Heidelberg: Berlin, Heidelberg, 2001: 307-399.

    [36] [36] POCKELS F C A. Lehrbuch der kristalloptik[M]. BG Teubner, 1906

    [37] [37] PETERSON G E, BALLMAN A A, LENZO P V, et al. Electro-optic properties of LiNbO3[J]. Applied Physics Letters, 1964, 5(3): 62-64.

    [38] [38] LENZO P V, SPENCER E G, NASSAU K. Electro-optic coefficients in single-domain ferroelectric lithium niobate[J].JOSA, 1966, 56(5): 633-635.

    [39] [39] TURNER E H. High-frequency electro-optic coefficients of lithium niobate[J]. Applied Physics Letters, 1966, 8(11): 303-304.

    [40] [40] KAMINOW I P, SHARPLESS W M. Performance of LiTaO3 and LiNbO3 light modulators at 4 GHz[J]. Applied Optics, 1967, 6(2): 351-352.

    [41] [41] KAMINOW I P, TURNER E H. Electrooptic light modulators[J]. Applied Optics, 1966, 5(10): 1612-1628.

    [42] [42] BERLINCOURT D A, CURRAN D R, JAFFE H. Piezoelectric and piezomagnetic materials and their function in transducers[M]//Physical Acoustics. Amsterdam: Elsevier, 1964: 169-270.

    [43] [43] KAMINOW I P. Barium titanate light phase modulator[J]. Applied Physics Letters, 1965, 7(5): 123-125.

    [44] [44] KAMINOW I P. Barium titanate light modulator.Ⅱ[J]. Applied Physics Letters, 1966, 8(11): 305-307.

    [45] [45] HIRSCHMANN E. Electro-optic and magneto-optic modulators[R]. Washington D. C.: NASA, 1967.

    [46] [46] BASS J C. A review of electro-optic beam deflection techniques[J]. Radio and Electronic Engineer,1968, 34(6): 345-352.

    [47] [47] SHANG J F, SUN J, LI Q L, et al. Single-block pulse-on electro-optic Q-switch made of LiNbO3[J]. Scientific Reports, 2017, 7: 4651.

    [48] [48] SHANG J F, SUN J, LI Q L, et al. High-repetition-rate LiNbO3 electro-optic Q-switched Nd∶YVO4 laser[J]. Acta Photonica Sinica, 2018, 47(5): 0514001.

    [50] [50] Integrated optical amplitude modulator: modulate light with high frequencies [OL]. https://www.jenoptik.com/products/optoelectronic-systems/light-modulation/integrated-optical-modulators-fiber-coupled/amplitude-modulator

    [51] [51] MAKER P D, TERHUNE R W, NISENOFF M, et al. Effects of dispersion and focusing on the production of optical harmonics[J]. Physical Review Letters, 1962, 8(1): 21-22.

    [52] [52] ARMSTRONG J A, BLOEMBERGEN N, DUCUING J, et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 1962, 127(6): 1918-1939.

    [53] [53] MILLER R C. Optical second harmonic generation in piezoelectric crystals[J]. Applied Physics Letters, 1964, 5(1): 17-19.

    [54] [54] MILLER R C, BOYD G D, SAVAGE A. Nonlinear optical interactions in LiNbO3 without double refraction[J]. Applied Physics Letters, 1965, 6(4): 77-79.

    [55] [55] GIORDMAINE J A, MILLER R C. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies[J]. Physical Review Letters, 1965, 14(24): 973-976.

    [56] [56] GIORDMAINE J A, MILLER R C. Optical parametric oscillation in the visible spectrum[J]. Applied Physics Letters, 1966, 9(8): 298-300.

    [57] [57] HOBDEN M V, WARNER J. The temperature dependence of the refractive indices of pure lithium niobate[J]. Physics Letters, 1966, 22(3): 243-244.

    [58] [58] MIDWINTER J E, WARNER J. Up-conversion of near infrared to visible radiation in lithium-meta-niobate[J]. Journal of Applied Physics, 1967, 38(2): 519-523.

    [59] [59] MIDWINTER J E. Image conversion from 1.6 μm to the visible in lithium niobate[J]. Applied Physics Letters, 1968, 12(3): 68-70.

    [60] [60] MIDWINTER J. Parametric infrared image converters[J]. IEEE Journal of Quantum Electronics, 1968, 4(11): 716-720.

    [61] [61] ANDREWS R. Wide angular aperture image up-conversion[J]. IEEE Journal of Quantum Electronics, 1969, 5(11): 548-550.

    [62] [62] MIDWINTER J E. Infrared up conversion in lithium-niobate with large bandwidth and solid acceptance angle[J]. Applied Physics Letters, 1969, 14(1): 29-32.

    [63] [63] ABBAS M M, KOSTIUK T, OGILVIE K W. Infraredupconversion for astronomical applications[J]. Applied Optics, 1976, 15(4): 961-970.

    [64] [64] FARIES D W. Far-infrared generation by nonlinear optical interaction[D].Berkeley: University of California Berkeley, 1969.

    [65] [65] AUSTON D H, GLASS A M, LEFUR P. Tunable far-infrared generation by difference frequency mixing of dye lasers in reduced (black) lithium niobate[J]. Applied Physics Letters, 1973, 23(1): 47-48.

    [66] [66] THOMPSON D E, MCMULLEN J D, ANDERSON D B. Second-harmonic generation in GaAs“stack of plates” using high-power CO2 laser radiation[J]. Applied Physics Letters, 1976, 29(2): 113-115.

    [67] [67] DEWEY C F, HOCKER L O. Enhanced nonlinear optical effects in rotationally twinned crystals[J]. Applied Physics Letters, 1975, 26(8): 442-444.

    [68] [68] ZHU S N, ZHU Y Y, MING N B. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice[J]. Science, 1997, 278(5339): 843-846.

    [69] [69] WEI D Z, WANG C W, WANG H J, et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal[J]. Nature Photonics, 2018, 12(10): 596-600.

    [70] [70] Covesion Ltd. SHG crystals[EB/OL]. (2020-10-09)[2021-04-26]https://www.covesion.com/en/products/mgoppln-crystals/shg-crystals.

    [71] [71] HU X P, ZHAO G, YAN Z, et al. High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd∶YAG laser with a cascadedLiTaO3 superlattice[J]. Optics Letters, 2008, 33(4): 408-410.

    [72] [72] WARNER A. New piezoelectric materials[C]//19th Annual Symposium on Frequency Control. April 20-22, 1965, Atlantic City, NJ, USA. IEEE, 1965: 5-21.

    [73] [73] JAFFE H. Piezoelectric ceramics[J]. Journal of the American Ceramic Society, 1958, 41(11): 494-498.

    [74] [74] BRIENZA M J, DEMARIA A J. Laser-induced microwave sound by surface heating[J]. Applied Physics Letters, 1967, 11(2): 44-46.

    [75] [75] WEN C P, MAYO R F. Acoustic attenuation of single-domain lithium niobate[J]. IEEE Transactions on Electron Devices, 1966, ED-13(8/9): 678.

    [76] [76] FRASER D B, WARNER A W. Lithium niobate: a high-temperature piezoelectric transducer material[J]. Journal of Applied Physics, 1966, 37(10): 3853-3854.

    [77] [77] GRIFFIN J W, PETERS T J, POSAKONY G J, et al. Under-sodium viewing: a review of ultrasonic imaging technology for liquid metal fast reactors[R]. Office of Scientific and Technical Information (OSTI), 2009.

    [78] [78] BAO X Q, SCOTT J, BOUDREAU K, et al. High temperature piezoelectric drill[C]//Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2009. San Diego, California, USA. SPIE, 2009.

    [79] [79] BAO X Q, BAR-COHEN Y, SCOTT J, et al. Ultrasonic/sonic drill for high temperature application[C]//Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2010. San Diego, California, USA. SPIE, 2010.

    [80] [80] BAO X Q, BAR-COHEN Y, SHERRIT S, et al. High temperature piezoelectric drill[C]//Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2012. San Diego, California. SPIE, 2012.

    [81] [81] DAMON R W. Solid-state microwave delay lines[J]. IEEE Spectrum, 1967, 4(6): 87-92.

    [82] [82] ASHKIN A, BOYD G D, DZIEDZIC J M, et al. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3[J]. Applied Physics Letters, 1966, 9(1): 72-74.

    [83] [83] CHEN F S, LAMACCHIA J T, FRASER D B. Holographic storage in lithium niobate[J]. Applied Physics Letters, 1968, 13(7): 223-225.

    [84] [84] CHEN F S. Optically induced change of refractive indices in LiNbO3 and LiTaO3[J]. Journal of Applied Physics, 1969, 40(8): 3389-3396.

    [85] [85] HALL T J, JAURA R, CONNORS L M, et al. The photorefractive effect—a review[J]. Progress in Quantum Electronics, 1985, 10(2): 77-146.

    [86] [86] KUKHTAREV N V, MARKOV V B, ODULOV S G, et al. Holographic storage in electrooptic crystals. i. steady state[J]. Ferroelectrics, 1978, 22(1): 949-960.

    [87] [87] BOYD G D, BOND W L, CARTER H L. Refractive index as a function of temperature in LiNbO3[J]. Journal of Applied Physics, 1967, 38(4): 1941-1943.

    [88] [88] BYER R L, PARK Y K, FEIGELSON R S, et al. Efficient second-harmonic generation of Nd∶YAG laser radiation using warm phasematching LiNbO3[J]. Applied Physics Letters, 1981, 39(1): 17-19.

    [89] [89] VOLK T R, PRYALKIN V I, RUBININA N M. Optical-damage-resistant LiNbO3∶Zn crystal[J]. Optics Letters, 1990, 15(18): 996-998.

    [90] [90] YAMAMOTO J K, KITAMURA K, IYI N, et al. Increased optical damage resistance in Sc2O3-doped LiNbO3[J]. Applied Physics Letters, 1992, 61(18): 2156-2158.

    [91] [91] KONG Y F, WEN J K, WANG H F. New doped lithium niobate crystal with high resistance to photorefraction: LiNbO3∶In[J]. Applied Physics Letters, 1995, 66(3): 280-281.

    [93] [93] KONG Y F, LIU S G, ZHAO Y J, et al. Highly optical damage resistant crystal:zirconium-oxide-doped lithium niobate[J]. Applied Physics Letters, 2007, 91(8): 081908.

    [94] [94] LIU F C, KONG Y F, LI W, et al. High resistance against ultraviolet photorefraction in zirconium-doped lithium niobate crystals[J]. Optics Letters,2009, 35(1): 10.

    [95] [95] XIN F F, ZHANG G Q, GE X Y, et al. Ultraviolet band edge photorefractivity in LiNbO3∶Sn crystals[J]. Optics Letters, 2011, 36(16): 3163-3165.

    [96] [96] AMODEI J J, PHILLIPS W, STAEBLER D L. Improved electrooptic materials and fixing techniques for holographic recording[J]. Applied Optics, 1972, 11(2): 390.

    [97] [97] GAYLORD T K, TITTEL F K. Angular selectivity of lithium niobate volume holograms[J]. Journal of Applied Physics, 1973, 44(10): 4771-4773.

    [98] [98] WHITE J O, CRONIN-GOLOMB M, FISCHER B, et al. Coherent oscillation by self-induced gratings in the photorefractive crystal BaTiO3[J]. Applied Physics Letters, 1982, 40(6): 450-452.

    [99] [99] CRONIN-GOLOMB M, FISCHER B, WHITE J O, et al. Passive phase conjugate mirror based on self-induced oscillation in an optical ring cavity[J]. Applied Physics Letters, 1983, 42(11): 919-921.

    [100] [100] KURZ H. Wavelength dependence of the photorefractive process in doped LiNbO3[J]. Ferroelectrics, 1974, 8(1): 437-439.

    [101] [101] MAGNUSSON R, GAYLORD T K. Laser scattering induced holograms in lithium niobate[J]. Applied Optics, 1974, 13(7):1545_1-1548.

    [102] [102] ZHANG G Y, LI Q X, HO P P, et al. Dependence of specklon size on the laser beam size via photo-induced light scattering in LiNbO3∶Fe[J]. Applied Optics, 1986, 25(17): 2955-2959.

    [103] [103] ZHANG G,LIU S, WU Z, et al. Degenerate stimulated parametric scattering in LiNbO3∶Fe[J]. Journal of the Optical Society of America B, 1987, 4(6): 882.

    [104] [104] LIU S M, XU J J, ZHANG G Y, et al. Light-climbing effect in LiNbO3∶Fe crystal[J]. Applied Optics, 1994, 33(6): 997-999.

    [105] [105] XU J J, ZHANG G Y, LI F F, et al. Enhancement of ultraviolet photorefraction in highly magnesium-doped lithium niobate crystals[J]. Optics Letters, 2000, 25(2): 129-131.

    [106] [106] LAMARQUE T, NICOLAUS R, LOISEAUX B, et al. Programmable 2D laser marking device based on a pulsed UV image coherent amplifier[C]//Proc SPIE 5063, Fourth International Symposium on Laser Precision Microfabrication, 2003, 5063: 386-388.

    [107] [107] Microsoft Research Lab. Optics for the cloud[OL]. (2021-03-03)[2021-04-26]https://www.microsoft.com/en-us/research/group/optics-for-the-cloud.

    [108] [108] TAY S,BLANCHE P A, VOORAKARANAM R, et al. An updatable holographic three-dimensional display[J]. Nature, 2008, 451(7179): 694-698.

    [109] [109] TIAN T, KONG Y F, LIU S G, et al. Fast UV-Vis photorefractive response of Zr and Mg codoped LiNbO3∶Mo[J]. Optics Express, 2013, 21(9): 10460-10466.

    [110] [110] ZHENG D H, KONG Y F, LIU S G, et al. The simultaneous enhancement of photorefraction and optical damage resistance in MgO and Bi2O3 co-doped LiNbO3 crystals[J]. Scientific Reports, 2016, 6: 20308.

    [111] [111] ZHENG D H, WANG W W, WANG S L, et al. Real-time dynamic holographic display realized by bismuth and magnesium co-doped lithium niobate[J]. Applied Physics Letters, 2019, 114(24): 241903.

    [112] [112] MILLER S E. Integrated optics: an introduction[J]. The Bell System Technical Journal, 1969, 48(7): 2059-2069.

    [113] [113] KAMINOW I P, CARRUTHERS J R. Optical waveguiding layers in LiNbO3 and LiTaO3[J]. Applied Physics Letters, 1973, 22(7): 326-328.

    [114] [114] OHMACHI Y, NODA J. Electro-optic light modulator with branched ridge waveguide[J]. Applied Physics Letters, 1975, 27(10): 544-546.

    [115] [115] JACKEL J L, RICE C E, VESELKA J J. Proton exchange for high-index waveguides in LiNbO3[J]. Applied Physics Letters, 1982, 41(7): 607-608.

    [116] [116] LEVY M, OSGOOD R M, LIU R, et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing[J]. Applied Physics Letters, 1998, 73(16): 2293-2295.

    [117] [117] RABIEI P, GUNTER P. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding[J]. Applied Physics Letters, 2004, 85(20): 4603-4605.

    [118] [118] HU H, GUI L, RICKEN R, et al. Towards nonlinear photonic wires in lithium niobate[C]//SPIE OPTO. Proc SPIE 7604, Integrated Optics: Devices, Materials, and Technologies XIV, San Francisco, California, USA. 2010, 7604: 76040R.

    [121] [121] DESIATOV B, SHAMS-ANSARI A, ZHANG M, et al. Ultra-low-loss integrated visible photonics usingthin-film lithium niobate[J]. Optica, 2019, 6(3): 380-384.

    [122] [122] WU R B, ZHANG J H, YAO N, et al. Lithium niobate micro-disk resonators of quality factors above 107[J]. Optics Letters, 2018, 43(17): 4116-4119.

    [123] [123] WU R B, WANG M, XU J, et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness[J]. Nanomaterials, 2018, 8(11): 910.

    [124] [124] RABIEI P, STEIER W H. Lithium niobate ridge waveguides and modulators fabricated using smart guide[J]. Applied Physics Letters, 2005, 86(16): 161115.

    [125] [125] BOES A, CORCORAN B, CHANG L, et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits[J]. Laser & Photonics Reviews, 2018, 12(4): 1700256.

    [126] [126] HONARDOOST A, ABDELSALAM K, FATHPOUR S. Rejuvenating a versatile photonic material: thin-film lithium niobate[J]. Laser & Photonics Reviews, 2020, 14(9): 2000088.

    [127] [127] SUN D H, ZHANG Y W, WANG D Z, et al. Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications[J]. Light: Science & Applications, 2020, 9: 197.

    [128] [128] QI Y F, LI Y. Integrated lithium niobate photonics[J]. Nanophotonics, 2020, 9(6): 1287-1320.

    [131] [131] JIA Y C, WANG L, CHEN F. Ion-cut lithium niobate on insulator technology: recent advances and perspectives[J]. Applied Physics Reviews, 2021, 8(1): 011307.

    [132] [132] ZHENG Y L, CHEN X F. Nonlinear wave mixing in lithium niobate thin film[J]. Advances in Physics: X, 2021, 6(1): 1889402.

    [134] [134] WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101-104.

    [135] [135] HE M B, XU M Y, REN Y X, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit·s-1 and beyond[J]. Nature Photonics, 2019, 13(5): 359-364.

    [136] [136] WU R B, LIN J T, WANG M, et al. Fabrication of a multifunctional photonic integrated chip on lithium niobate on insulator using femtosecond laser-assisted chemomechanicalpolish[J]. Optics Letters, 2019, 44(19): 4698-4701.

    [137] [137] LI M X, LING J W, HE Y, et al. Lithium niobate photonic-crystal electro-optic modulator[J]. Nature Communications, 2020, 11: 4123.

    [138] [138] JIANG X F, XIAO Y F, ZOU C L, et al. Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities[J]. Advanced Materials, 2012, 24(35): OP260-OP264.

    [140] [140] ZHANG X Y, CAO Q T, WANG Z, et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface[J]. Nature Photonics, 2019, 13(1): 21-24.

    [141] [141] XIAO Y F, ZOU C, GONG Q, et al. Ultra-high-Q optical microcavities[M]. World Scientific, 2020.

    [142] [142] LIN J T, XU Y X, FANG Z W, et al. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining[J]. Scientific Reports, 2015, 5: 8072.

    [143] [143] WANG J, BO F, WAN S, et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-opticmodulation[J]. Optics Express, 2015, 23(18): 23072-23078.

    [144] [144] ZHENG Y, FANG Z, LIU S, et al. High-Q exterior whispering-gallery modes in a double-layer crystalline microdisk resonator[J]. Physical Review Letters, 2019, 122(25): 253902.

    [145] [145] WANG C, ZHANG M, YU M J, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation[J]. Nature Communications, 2019, 10: 978.

    [146] [146] ZHANG M, BUSCAINO B, WANG C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568(7752): 373-377.

    [147] [147] WANG Z, FANG Z W, LIU Z X, et al. On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator[J]. Optics Letters, 2021, 46(2): 380-383.

    [148] [148] LIU Y A, YAN X S, WU J W, et al. On-chip erbium-doped lithium niobate microcavity laser[J]. Science China Physics, Mechanics & Astronomy, 2020, 64(3): 234262.

    [149] [149] LUO Q, HAO Z Z, YANG C, et al. Microdisk lasers on an erbium-doped lithium-niobite chip[J]. Science China Physics, Mechanics & Astronomy,2020, 64(3): 234263.

    [150] [150] YIN D F, ZHOU Y, LIU Z X, et al. Electro-optically tunable microring laser monolithically integrated on lithium niobate on insulator[J]. Optics Letters, 2021, 46(9): 2127-2130.

    [151] [151] YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

    [152] [152] REN M X, CAI W, XU J J. Tailorable dynamics in nonlinear optical metasurfaces[J]. Advanced Materials, 2020, 32(3): 1806317.

    [155] [155] YANG Y M, KRAVCHENKO I I, BRIGGS D P, et al. All-dielectric metasurface analogue of electromagnetically induced transparency[J]. Nature Communications, 2014, 5: 5753.

    [156] [156] LIU H Z, GUO C, VAMPA G, et al. Enhanced high-harmonic generation from an all-dielectric metasurface[J]. Nature Physics, 2018, 14(10): 1006-1010.

    [157] [157] GAO Y S, FAN Y B, WANG Y J, et al. Nonlinearholographic all-dielectric metasurfaces[J]. Nano Letters, 2018, 18(12): 8054-8061.

    [158] [158] VABISHCHEVICH P P, LIU S, SINCLAIR M B, et al. Enhanced second-harmonic generationin broken symmetry Ⅲ-V semiconductor metasurfaces driven by fano resonance[J]. 2018: FW3G.1.

    [159] [159] LIU S, VABISHCHEVICH P P, VASKIN A, et al. An all-dielectric metasurface as a broadband optical frequency mixer[J]. Nature Communications, 2018, 9: 2507.

    [160] [160] SUN S, ZHOU Z, ZHANG C, et al. All-dielectric full-color printing with TiO2 metasurfaces[J]. ACS Nano, 2017, 11(5): 4445-4452.

    [161] [161] SEMMLINGER M, ZHANG M, TSENG M L, et al. Generating third harmonic vacuum ultraviolet light with a TiO2 metasurface[J]. Nano Letters, 2019, 19(12): 8972-8978.

    [162] [162] ZHANG D, REN M X, WU W, et al. Nanoscale beam splitters based on gradient metasurfaces[J]. Optics Letters, 2018, 43(2): 267-270.

    [163] [163] GAO B F, REN M X, WU W, et al. Lithium niobate metasurfaces[J]. Laser & Photonics Reviews, 2019, 13(5): 1800312.

    [164] [164] MA J J, CHEN J X, REN M X, et al. Second-harmonic generation and its nonlinear depolarization from lithium niobate thin films[J]. Optics Letters, 2020, 45(1): 145-148.

    [165] [165] MA J J,REN M X, WU W, et al. Resonantly tunable second harmonic generation from lithium niobate metasurfaces[EB/OL]. 2020.

    [166] [166] MA J J, XIE F, CHEN W J, et al. Nonlinear lithium niobate metasurfaces for second harmonic generation[J].Laser & Photonics Reviews, 2021, 15(5): 2000521.

    [167] [167] FEDOTOVA A, YOUNESI M, SAUTTER J, et al. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate[J]. Nano Letters, 2020, 20(12): 8608-8614.

    [168] [168] CARLETTI L, ZILLI A, MOIA F, et al. Steering and encoding the polarization of the second harmonic in the visible with a monolithic LiNbO3 metasurface[J]. ACS Photonics, 2021, 8(3): 731-737.

    [169] [169] FANG B, LI H M, ZHU S N, et al. Second-harmonic generation and manipulation in lithium niobate slab waveguides by grating metasurfaces[J]. Photonics Research, 2020, 8(8): 1296-1300.

    [170] [170] KIM K H, RIM W S. Anapole resonances facilitated by high-index contrast between substrate and dielectric nanodisk enhance vacuum ultraviolet generation[J]. ACS Photonics, 2018, 5(12): 4769-4775.

    [171] [171] LI Y, HUANG Z J, SUI Z, et al. Optical anapole mode in nanostructured lithium niobate for enhancing second harmonic generation[J]. Nanophotonics, 2020, 9(11): 3575-3585.

    [172] [172] TIMPU F, SENDRA J, RENAUT C, et al. Lithium niobate nanocubes as linear and nonlinear ultravioletMie resonators[J]. ACS Photonics, 2019, 6(2): 545-552.

    [173] [173] GAO B F, REN M X, WU W, et al. Electro-optic lithium niobate metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2021, 64(4): 1-6.

    CLP Journals

    [1] SHI Guoqiang, CHEN Kunfeng, TANG Gongbin, HU Hui, XUE Dongfeng. Evolution of Mesoscale Clusters in Study of Defects in Lithium Niobate Crystals[J]. Journal of the Chinese Ceramic Society, 2023, 51(6): 1425

    [2] ZHENG Dahuai, ZHANG Yuqi, WANG Shuolin, LIU Hongde, LIU Shiguo, KONG Yongfa, BO Fang, XU Jingjun. Photorefractive Effect of Lithium Niobate Crystals[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1626

    [3] WU Jing, LI Qinglian, ZHANG Zhongzheng, YANG Jinfeng, HAO Yongxin, LI Jiaxin, LIU Shiguo, ZHANG Ling, SUN Jun. Experimental Study on Internal Bias Electric Field of Nominally Undoped and Doped Lithium Niobate Crystals[J]. Journal of Synthetic Crystals, 2022, 51(4): 571

    Tools

    Get Citation

    Copy Citation Text

    GAO Bofeng, REN Mengxin, ZHENG Dahuai, WU Wei, CAI Wei, SUN Jun, KONG Yongfa, XU Jingjun. Long-Lived Lithium Niobate: History and Progress[J]. Journal of Synthetic Crystals, 2021, 50(7): 1183

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 14, 2021

    Accepted: --

    Published Online: Dec. 7, 2021

    The Author Email: Bofeng GAO (gao_bofeng@mail.nankai.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics