Chinese Journal of Lasers, Volume. 50, Issue 15, 1507203(2023)

Abnormal Cervical Cell Detection Algorithm Based on Improved RetinaNet

Runkun Liu1,2, Shijie Dang2, Hongyuan Zhang2, Yinyin Niu3, Guanxun Mi3, Sanhua Li3, Zhenxin Chen2, Lingxiao Zhao2、*, and Peng Li2
Author Affiliations
  • 1Division of Life Sciences and Medicine, School of Biomedical Engineering (Suzhou), University of Science and Technology of China, Hefei 230026, Anhui, China
  • 2Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215162, Jiangsu, China
  • 3Henan Celnovte Biotechnology Co., Ltd., Zhengzhou 450001, Henan, China
  • show less
    Figures & Tables(16)
    Structure of the AFF-RetinaNet
    Residual block structure of ResNeSt-50
    Diagram of split attention
    Non-local attention block structure
    CIoU Loss calculation diagram
    Diagram of WSI inference process
    Example of data annotation
    Distribution density graph of label boxes size
    Comparison of AFF-RetinaNet and RetinaNet detection results. (a) Ground truth; (b) RetinaNet; (c) AFF-RetinaNet
    Comparison of WSI inference results and ground truth. (a) WSI inference results; (b) ground truth
    Visualization examples of AFF-RetinaNet-based WSI inference results in ROI
    • Table 1. Algorithm process of NMS

      View table

      Table 1. Algorithm process of NMS

      NMS algorithm:remove redundant detection boxes

      Input: detection boxes set B,IoU threshold T

      Output: detection boxes set K after NMS

      1:K←∅;

      2:all boxes in B are descending ordered by confidence score;

      3:whileB≠∅ do

      4: bms←the first detection box in B

      5: add bms to K

      6: del bms from B

      7: forbinBdo

      8: if IoU of b and bms > Tdo

      9: del b from B

      10: endif

      11: endfor

      12: endwhile

      13: returnK

    • Table 2. Statistics of experiment data

      View table

      Table 2. Statistics of experiment data

      Data typeNumber
      WSI233
      ROI(total)1103
      Abnormal cell11188
      ROI for generating training set883
      Training set8106
      ROI for generating test set220
      Test set2125
    • Table 3. Ablation experimental experiment

      View table

      Table 3. Ablation experimental experiment

      GroupResNeSt-50BFPCIoU LossmAP /%mAP-s /%mAP-m /%mAP-l /%Recall %
      1×××80.213.638.549.159.0
      2××81.015.039.650.858.9
      3×81.315.939.850.960.7
      483.424.441.551.860.2
    • Table 4. Performance comparison of mainstream algorithms on TCT dataset

      View table

      Table 4. Performance comparison of mainstream algorithms on TCT dataset

      Algorithm

      mAP /

      %

      mAP-s /

      %

      FPSParameter quantity /106
      YOLOv370.714.9101.061.5
      Cascade R-CNN75.115.431.268.9
      Faster R-CNN77.414.337.341.1
      LAD2577.614.921.631.8
      FCOS79.116.344.831.8
      TOOD2679.915.520.731.8
      RetinaNet80.213.649.236.1
      DDOD2780.714.339.631.9
      AFF-RetinaNet83.424.425.436.4
    • Table 5. Comparison of WSI inference results based on different algorithms

      View table

      Table 5. Comparison of WSI inference results based on different algorithms

      AlgorithmmAP /%
      YOLOv356.5
      LAD59.0
      FCOS60.6
      DDOD62.0
      TOOD64.6
      Cascade R-CNN66.3
      Faster R-CNN67.4
      RetinaNet70.2
      AFF-RetinaNet70.8
    Tools

    Get Citation

    Copy Citation Text

    Runkun Liu, Shijie Dang, Hongyuan Zhang, Yinyin Niu, Guanxun Mi, Sanhua Li, Zhenxin Chen, Lingxiao Zhao, Peng Li. Abnormal Cervical Cell Detection Algorithm Based on Improved RetinaNet[J]. Chinese Journal of Lasers, 2023, 50(15): 1507203

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Diagnostics and Therapy

    Received: Feb. 27, 2023

    Accepted: Apr. 25, 2023

    Published Online: Aug. 8, 2023

    The Author Email: Zhao Lingxiao (hitic@sibet.ac.cn)

    DOI:10.3788/CJL230718

    Topics