Chinese Journal of Lasers, Volume. 37, Issue 10, 2502(2010)
Influence of Fine Structure Mixing Rate on Laser Diode Pumped Alkali Laser
[3] [3] W. F. Krupke, R. J. Beach, V. K. Kanz et al.. Resonance transition 795 nm rubidium laser[J]. Opt. Lett., 2003, 28(23): 2336~2338
[4] [4] R. H. Page, R.J.Beach, V. K. Kanz et al.. First demonstration of a diode-pumped gas (alkali vapor) laser[C]. CLEO, 2005, 467~469
[5] [5] B. V. Zhdanov, R. J. Knize. Diode-pumped 10 W continuous wave cesium laser[J]. Opt. Lett., 2007, 32(15): 2167~2169
[6] [6] B. V. Zhdanov, A. Stooke, G. Boyadjian et al.. Rubidium vapor laser pumped by two laser diode arrays[J]. Opt. Lett., 2007, 33(5): 414~415
[7] [7] B. V. Zhdanov, J. Sell, R. J. Knize. Multiple laser diode array pumped Cs laser with 48 W output power[J]. Electron. Lett., 2008, 44(9): 582~584
[8] [8] D. A. Hostutler, W. L. Klennert. Power enhancement of a rubidium vapor laser with a master oscillator power amplifier[J]. Opt. Express, 2008, 16(11): 8050~8053
[9] [9] G. Hager, J. McIver, D. Hostutler et al.. Quasi-two level analytic model for end pumped alkali metal vapor laser[C]. SPIE, 2008, 700528-1
[10] [10] G. A. Pitz, G. P. Perram. Pressure broadening of the D1 and D2 lines in diode pumped alkali lasers[C]. SPIE, 2008, 7005: 700526-1
[11] [11] Y. Wang, T. Kasamatsu, Y. Zheng et al.. Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array[J]. Appl. Phys. Lett., 2006, 88(14): 14112
[12] [12] Y. Wang, M. Niigaki, H. Fukuoka et al.. Approaches of output improvement for a cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array[J]. Phys. Lett. A, 2007, 360(4-5): 659~663
[13] [13] Y. Wang, M. Niigaki, H. Fukuoka et al.. High-efficiency 894 nm laser emission of laser-diode-bar-pumped cesium-vapor laser[J]. Appl. Phys. Exp., 2009, 2: 032051
[14] [14] DPAL Sets Peak Power Record. Photons&fusion, news letter [J]. 2008. 11
[15] [15] C. Lim, Y. Izawa. Modeling of end-pumped CW quasi-three-level lasers[J]. IEEE J. Quantum Electron., 2002, 38(3): 306~311
[16] [16] T. Y. Fan. Optimizing the efficiency and stored energy in quasi-three-level lasers[J]. IEEE J. Quantum Electron., 1992, 28(12): 2692~2697
[17] [17] P. Peterson, A. Gavrielides, P. M. Sharma. CW theory of a laser diode-pumped two-manifold solid state laser[J]. Opt. Commun., 1994, 109(3-4): 282~287
[18] [18] F. Augé, F. Druon, F. Balembois et al.. Theoretical and experimental investigations of a diode-pumped quasi-three-level laser: The Yb3+ doped Ca4GdO(BO3)3(YbGdCOB) laser[J]. IEEE J. Quantum Electron., 2000, 36(5): 598~606
[19] [19] A. E. Siegmann. Lasers[M]. Sausalito: University Science Books, 1986. Chap. 4
[20] [20] R. J. Beach. CW theory of quasi-three level end-pumped laser oscillators [J]. Opt. Commun., 1996, 123(1-3): 385~393
[21] [21] R. J. Beach, W. F. Krupke, V. K. Kanz et al.. End-pumped continuouswave alkali vapor lasers: experiment, model, and power scaling[J]. J. Opt. Soc. Am. B, 2004, 21(12): 2151~2163
Get Citation
Copy Citation Text
Yang Zining, Wang Hongyan, Lu Qisheng, Li Yuandong, Xu Xiaojun. Influence of Fine Structure Mixing Rate on Laser Diode Pumped Alkali Laser[J]. Chinese Journal of Lasers, 2010, 37(10): 2502
Category:
Received: Dec. 30, 2009
Accepted: --
Published Online: Sep. 25, 2010
The Author Email: Zining Yang (diablo_3rd@126.com)