Laser Technology, Volume. 49, Issue 1, 74(2025)
Exploration of characteristics of high-speed surface emitting lasers
[2] [2] CISCO. Cisco global cloud index: Forecast and methodology, 2016-2021[EB/OL]. (2018-11-26) [2023-11-20]. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index/white-paper-c11-481360.html.
[3] [3] CUI N, GUAN B, LI J, et al. 850 nm VCSEL with sub quantum well and p-type -doping in the active layers for improved high-speed and high-temperature performance[J]. Optics Communications, 2023, 530: 129128.
[4] [4] BIMBERG D. Ultrafast VCSELs for datacom[J]. IEEE Photonics Journal, 2010, 2(2): 273-275.
[5] [5] BEBBER A F, IGNATOWSKI M, KASH J A, et al. Exploitation of optical interconnects in future server architectures[J]. IBM Journal of Research and Development, 2005, 49(4/5): 755-775.
[6] [6] KAPON E, SIRBU A. Power-efficient answer[J]. Nature Photonics, 2009, 3(1): 27-29.
[7] [7] ZUO T, ZHANG T, ZHANG S, et al. 850 nm VCSEL-based single-lane 200 Gbps PAM-4 transmission for datacenter intra-connections[J]. IEEE Photonics Technology Letters, 2021, 33(18): 1042-1045.
[8] [8] LAVEWNCIK J. 168 Gbps PAM-4 multimode fiber transmission through 50 m using 28 GHz 850 nm multimode VCSELs[C]//2020 Optical Fiber Communications Conference and Exhibition (OFC). New York, USA: IEEE Press, 2020: 1-3.
[12] [12] LI H. Temperature-stable, energy-efficient, and high bit-rate 980 nm VCSELs[D]. Berlin, Germany: Technische Universitaet Berlin, 2015: 1070-1863.
[14] [14] WESTBERGH P, GUSTAVSSON J S, HAGLUND A, et al. High-speed, low-current-density 850 nm VCSELs[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(3): 694-703.
[15] [15] WESTBERGH P, GUSTAVSSON J S, KOGEL B, et al. Impact of photon lifetime on high-speed VCSEL performance[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(6): 1603-1613.
[16] [16] LARISCH G, MOSER P, LOTT J A, et al. Impact of photon lifetime on the temperature stability of 50 Gb/s 980 nm VCSELs[J]. IEEE Photonics Technology Letters, 2016, 28(21): 2327-2330.
[17] [17] HAGKUND E, WESTBERGHE P, GUSTAVSON J S, et al. High-speed VCSELs with strong confinement of optical fields and carriers[J]. Journal of Lightwave Technology, 2015, 34(2): 269-277.
[18] [18] MOSER P, LOTT J A, BIMBERG D. Energy efficiency of directly modulated oxide-confined high bit rate 850 nm VCSELs for optical interconnects[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1702212.
[19] [19] WESTBERGH P, SSFAISINI R, HAGLUND E, et al. High-speed oxide confined 850 nm VCSELs operating error-free at 40 Gb/s up to 85 ℃[J]. IEEE Photonics Technology Letters, 2013, 25(8): 768-771.
[20] [20] CHANG Y C, COLDREN L A. Efficient high-data-rate tapered oxide-aperture vertical-cavity surface-emitting lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(3): 704-715.
[21] [21] LI H, WOLF P, MOSER P, et al. Vertical-cavity surface-emitting lasers for optical interconnects[J]. SPIE Newsroom, 2014, 25: 126103.
[22] [22] WOLF P. Extraction and analysis of high-frequency response and impedance of 980 nm VCSELs as a function of temperature and oxide a-perture diameter[J]. Proceedings of the SPIE, 2015, 9381: 132-139.
[23] [23] CHI K L, SHI Y X, CHEN X N, et al. Single-mode 850 nm VCSELs for 54 Gb/s on-off keying transmission over 1 km multi-mode fiber[J]. IEEE Photonics Technology Letters, 2016, 28(12): 1367-1370.
[24] [24] Al-OMARI A N. Characteristics of polyimide-planarized oxide-confined vertical-cavity surface-emitting laser(VCSEL) diodes with passive heat sinking[J]. Lasers in Engineering, 2017, 38(3/6): 153-165.
[26] [26] COLDREN L A, CORZINE S W, MSAHANOVITCH M L. Diode lasers and photonic integrated circuits[M]. New York, USA: Wiley & Sons Inc., 2012: 195-245.
[27] [27] LI H, WOLF P, MOSER P, et al. Impact of the quantum well gain-to-cavity etalon wavelength offset on the high temperature performance of high bit rate 980 nm VCSELs[J]. IEEE Journal of Quantum Electronics, 2014, 50(8): 613-621.
[28] [28] COLDREN L A, CORZINE S W. Diode lasers and photonic integrated circuits[J]. Optical Engineering, 1997, 36(2): 195-245.
[29] [29] Al-OMARI A N, Al-KOFAHI I K, LEAR K L. Fabrication, performance and parasitic parameter extraction of 850 nm high-speed vertical-cavity lasers[J]. Semiconductor Science and Technology, 2009, 24(9): 095024.
[30] [30] MIAH M J, Al-SSMANEH A, KERN A, et al. Fabrication and characterization of low-threshold polarization-stable VCSELs for Cs-based miniaturized atomic clocks[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1701410.
[31] [31] OU Y, GUSTAVSSON J S, WESTERGH P, et al. Impedance cha-racteristics and parasitic speed limitations of high-speed 850 nm VCSELs[J]. IEEE Photonics Technology Letters, 2009, 21(24): 1840-1842.
[32] [32] BACOU A, HAYAT A, RISSONS A, et al. VCSEL intrinsic response extraction using T-matrix formalism[J]. IEEE Photonics Technology Letters, 2009, 21(14): 957-959.
[33] [33] CHANG Y C, COLDRENL A. High-efficiency, high-speed VCSELs for optical interconnects[J]. Applied Physics, 2009, A95: 1033-1037.
Get Citation
Copy Citation Text
CHEN Zhao, LI Hui, ZHONG Chuyu, ZHANG Xing, MIAO Wei, WANG Bin, ZHANG Shuaiyi. Exploration of characteristics of high-speed surface emitting lasers[J]. Laser Technology, 2025, 49(1): 74
Category:
Received: Nov. 20, 2023
Accepted: Feb. 18, 2025
Published Online: Feb. 18, 2025
The Author Email: LI Hui (shuaiyi163@163.com)