Infrared and Laser Engineering, Volume. 52, Issue 6, 20230218(2023)
Controllable fabrication and characterization of suspended graphene/hexagonal boron nitride heterostrcuture Joule heating infrared radiation devices (invited)
[4] Yang Qi, Shen Jun, Wei Xingzhan, et al. Recent progress on the mechanism and device structure of graphene-based infrared detectors[J]. Infrared and Laser Engineering, 49, 0103003(2020).
[5] Liu Zhi, Chen Jimin, Li Dongfang, et al. Laser-induced transformation of carbon nanotubes into graphene nanoribbons and their conductive properties[J]. Infrared and Laser Engineering, 49, 20200298(2020).
[6] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 6, 183-191(2007).
[7] Bae Myungho, Ong Zhunyong, Estrada David, et al. Imaging, simulation, and electrostatic control of power dissipation in graphene devices[J]. Nano Letters, 10, 4787-4793(2010).
[8] Freitag Marcus, Steiner Mathias, Martin Yves, et al. Energy dissipation in graphene field-effect transistors[J]. Nano Letters, 9, 1883-1888(2009).
[9] Freitag Marcus, Chiu Hsin-Ying, Steiner Mathias, et al. Thermal infrared emission from biased graphene[J]. Nature Nanotechnology, 5, 497-501(2010).
[10] Mahlmeister N H, Luxmoore I J, Poole T, et al. Thermal emission from large area chemical vapor deposited graphene devices[J]. Applied Physics Letters, 103, 131901-131906(2013).
[11] Kim Young Duck, Kim Hakseong, Cho Yujin, et al. Bright visible light emission from graphene[J]. Nature Nanotechnology, 10, 676-681(2015).
[12] Tchon K, Go Ral I. Graphene hot-electron light bulb: Incandescence from hBN-encapsulated graphene in air[J]. 2D Materials, 1910-1915(20185).
[13] Shiue Ren-Jye, Gao Yuanda, Tan Cheng, et al. Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity[J]. Nature Communications(2019101109).
[14] Luo Fang, Fan Yansong, Peng Gang, et al. Graphene thermal emitter with enhanced joule heating and localized light emission in air[J]. ACS Photonics, 2117-2125(20196).
[15] Brar Victor W, Sherrott Michellez, Jang Min Seok, et al. Electronic modulation of infrared radiation in graphene plasmonic resonators[J]. Nature Communications, 7032(201561).
[16] Meyer Jannik C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets[J]. Nature, 446, 60-63(2007).
[17] Fischbein Michael D, Drndic Marija. Electron beam nanosculpting of suspended graphene sheets[J]. Condensed Matter, 93, 113107(2008).
[19] Li Qiang, Cheng Zengguang, Li Zhongjun. Fabrication of suspended graphene devices and their electronic properties[J]. Chinese Physics B, 19, 97307(2010).
[20] Watanabe Kenji, Taniguchi Takashi, Kanda Hisao. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal[J]. Nature Materials, 3, 404-409(2004).
[22] Wang L, Meric I, Huang P Y, et al. One-dimensional electrical contact to a two-dimensional material.[J]. Science, 342, 614-617(2013).
[23] Dean C R, Young A F, Meric I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 5, 722-726(2010).
[24] Gao Xin, Zheng Liming, Luo Fang, et al. Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation[J]. Nature Communications, 13, 5410(2022).
[25] Fukamachi Satoru, Solís-fernández Pablo, Kawahara Kenji, et al. Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays[J]. Nature Electronics, 6, 126-136(2023).
[26] Li Xiaoli, Qiao Xiaofen, Han Wenpeng, et al. Layer number identification of intrinsic and defective multilayered graphenes up to 100 layers by the raman mode intensity from substrates[J]. Nanoscale, 7, 8135-8141(2015).
[27] Zhang T Y, Wang H W, Xia X X, et al. A monolithically sculpted van der waals nano-opto-electro-mechanical coupler[J]. Light Sci Appl, 11, 76-85(2022).
Get Citation
Copy Citation Text
Qiang Liu, Fang Luo, Xiaojiang Deng, Mengjian Zhu, Zhihong Zhu, Shiqiao Qin. Controllable fabrication and characterization of suspended graphene/hexagonal boron nitride heterostrcuture Joule heating infrared radiation devices (invited)[J]. Infrared and Laser Engineering, 2023, 52(6): 20230218
Category: Mirco-nano optics
Received: Mar. 20, 2023
Accepted: --
Published Online: Jul. 26, 2023
The Author Email: