Infrared and Laser Engineering, Volume. 51, Issue 3, 20210360(2022)
Design of solid-immersion infrared metalens
[1] Xie Xiumin, Xu Qiang, Chen Jian, et al. Research progress on antimonide based type-Ⅱ superlattice mid-and long-infrared detectors[J]. Laser Technology, 44, 688-694(2020).
[2] Chang Faran, Jiang Zhi, Wang Guowei, et al. Progress of long wavelength IR FPA arrays based on antimonide compounds superlattice[J]. Scientia Sinica Physica, Mechanica & Astronomica, 51, 28-45(2021).
[3] Manurkar P, Ramezani-Darvish S, Nguyen B M, et al. High performance long wavelength infrared mega-pixel focal plane array based on type-II superlattices[J]. Applied Physics Letters, 97, 1030(2010).
[4] Wang Guowei, Xu Yingqiang, Niu Zhichuan. Development of high-performance novel low-dimensional structure antimonide infrared FPAs: Challenges and solutions[J]. Scientia Sinica Physica, Mechanica & Astronomica, 44, 368-389(2014).
[5] [5] Antoni Rogalski. Infrared Terahertz Detects[M]. New Yk: CRC, 2019: 9697.
[6] Abolmaali F, Brettin A, Green A, et al. Photonic jets for highly effificient mid-IR focal plane arrays with large angle-of-view[J]. Optics Express, 25, 31174-31185(2017).
[7] Bai Jie, Hu Weida, Guo Nan, et al. Performance optimization of insb infrared focal-plane arrays with diffractive microlenses[J]. Journal of Electronic Materials, 43, 2795-2801(2014).
[8] Allen K W, Abolmaali F, Duran J M, et al. Increasing sensitivity and angle-of-view of mid-wave infrared detectors by integration with dielectric microspheres[J]. Applied Physics Letters, 108, 342-473(2016).
[9] Zhang S, Soibel A, Keo S A, et al. Solid-immersion metalenses for infrared focal plane arrays[J]. Applied Physics Letters, 113, 111104(2018).
[10] Soibel A, Keo S A, Fisher A, et al. High operating temperature nBn detector with monolithically integrated micro lens[J]. Applied Physics Letters, 112, 041105(2018).
[11] Fan Qingbin, Xu Ting. Research progress of imaging technologies based on electromagnetic metasurfaces[J]. Acta Physica Sinica, 66, 114208(2017).
[12] Li Xiong, Ma Xiaoliang, Luo Xiangang. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 44, 255-275(2017).
[13] Saima Kanwal, Wen Jing, Yu Binbin, et al. High-efficiency, broadband, near diffffraction-limited, dielectric metalens in ultraviolet spectrum[J]. Nanomaterials, 10, 490(2020).
[14] Chen Xianzhong, Chen Ming, Mehmood M Q, et al. Longitudinal multifoci metalens for circularly polarized light[J]. Advanced Optical Materials, 3, 1201-1206(2015).
[15] Fu Rao, Li Zile, Zheng Guoxing, et al. Reconfifigurable step-zoom metalens without optical and mechanical compensations[J]. Optics Express, 27, 12221-12230(2019).
[16] Huang Lingling, Chen Xianzhong, Mühlenbernd H, et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 12, 5750-5755(2012).
[17] Huang Lingling, Chen Xianzhong, Bai Benfeng, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light: Science & Applications, 2, e70(2013).
[18] Tang Dongliang, Wang Changtao, Zhao Zeyu, et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 9, 713-719(2015).
[19] Ren Haoran, Li Xiangping, Zhang Qiming, et al. On-chip noninterference angular momentum multiplexing of broadband light[J]. Science, 352, 805-809(2016).
[20] Zhang Xiaohu, Jin Jinjin, Pu Mingbo, et al. Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes[J]. Nanoscale, 9, 1409-1415(2017).
[21] Lei W, Kruk S, Tang H, et al. Grayscale transparent metasurface holograms[J]. Optica, 3, 1504-1505(2016).
[22] Choudhury S M, Wang D, Chaudhuri K, et al. Material platforms for optical metasurfaces[J]. Nanophotonics, 7, 959-987(2018).
[23] Zhang Dongling, Bai Yonglin, Feng Xiaoqiang, et al. Analysis of the optical field of solid immersion lens by FDTD[J]. Acta Photonica Sinica, 33, 884-888(2004).
[24] Xie Jianping, Lu Yonghua, Wang Pei, et al. Analysis of near-field distribution of solid immersion lens by angular spectrum[J]. Acta Optica Sinica, 22, 413-416(2002).
[25] West P R, Stewart J L, Kildishev A V, et al. All-dielectric subwavelength metasurface focusing lens[J]. Optics Express, 22, 26212-26221(2014).
[26] Shen Yue, Luo Xiangang. Efficient bending and focusing of light beam with all-dielectric subwavelength structures[J]. Optics Communications, 366, 174-178(2016).
[27] Yue Song, Wang Ran, Hou Maojing, et al. Narrow-band perfect absorption utilizing higher-order surface plasmon resonance[J]. Infrared and Laser Engineering, 49, 20190489(2020).
[28] Fan Q, Liu M, Yang C, et al. A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging[J]. Applied Physics Letters, 113, 201104(2018).
Get Citation
Copy Citation Text
Sanyong Deng, Song Yue, Dongliang Zhang, Zhaojun Liu, Huiyu Li, Yuan Liu, Zichen Zhang, Lianqing Zhu. Design of solid-immersion infrared metalens[J]. Infrared and Laser Engineering, 2022, 51(3): 20210360
Category: Optical design
Received: May. 31, 2021
Accepted: --
Published Online: Apr. 8, 2022
The Author Email: