Chinese Optics, Volume. 17, Issue 6, 1281(2024)

Weak feature confocal channel regulation for underwater sonar target detection

Meng-yun HE, Zi-fen HE*, Yin-hui ZHANG, Guang-chen CHEN, and Feng ZHANG
Author Affiliations
  • Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
  • show less
    Figures & Tables(13)
    WFCCMNet model structure
    Structural diagram of global information aggregation module
    Structural diagram of confocal channel regulation pooling module
    Distribution of data instances and a priori frames
    Visualisation of detection results
    • Table 1. Correspondence between output branches and a priori boxes before and after improvement

      View table
      View in Article

      Table 1. Correspondence between output branches and a priori boxes before and after improvement

      改进前改进后
      输出分支先验框尺度输出分支先验框尺度
      --P4[(116,90),(156,198),(373,326)]
      N3[(10,13),(16,30),(33,23)]P3[(5,6),(8,14),(15,11)]
      N4[(30,61),(62,45),(59,119)]P2[(10,13),(16,30),(33,23)]
      N5[(116,90),(156,198),(373,326)]P1[(30,61),(62,45),(59,119)]
    • Table 2. Target image area percentage

      View table
      View in Article

      Table 2. Target image area percentage

      Classes nameMaximum area of target frame(height×width)Ration
      ball156×1420.04
      circle cage128×1480.04
      cube140×1640.04
      cylinder122×1020.02
      human body215×2160.09
      metal bucket168×2060.07
      plane187×2780.10
      square cage130×1180.03
      tyre166×1660.05
    • Table 3. Improved module ablation experiments

      View table
      View in Article

      Table 3. Improved module ablation experiments

      GFLOPSmAP50human bodyballcircle cagesquare cagetyremetal bucketcubecylinderplane
      Baseline15.877.881.284.981.678.764.861.184.471.892.5
      +特征激活18.680.187.682.581.180.964.968.886.477.591
      +GIAM19.580.986.883.884.178.564.380.185.874.890.3
      +CFCRP23.783.389.885.779.182.973.185.191.771.291
    • Table 4. Correspondence of experiment codes with output layers and a priori boxes

      View table
      View in Article

      Table 4. Correspondence of experiment codes with output layers and a priori boxes

      实验代号输出分支先验框尺度输出分支先验框尺度
      G1--N4[(30,61),(62,45),(59,119)]
      N3[(10,13),(16,30),(33,23)]N5[(116,90),(156,198),(373,326)]
      G2P4[(5,6),(8,14),(15,11)]P2[(30,61),(62,45),(59,119)]
      P3[(10,13),(16,30),(33,23)]P1[(116,90),(156,198),(373,326)]
      G3P4[(10,13),(16,30),(33,23)]P2[(30,61),(62,45),(59,119)]
      P3[(5,6),(8,14),(15,11)]P1[(116,90),(156,198),(373,326)]
      G4P4[(30,61),(62,45),(59,119)]P2[(10,13),(16,30),(33,23)]
      P3[(5,6),(8,14),(15,11)]P1[(116,90),(156,198),(373,326)]
      G5P4[(116,90),(156,198),(373,326)]P2[(10,13),(16,30),(33,23)]
      P3[(5,6),(8,14),(15,11)]P1[(30,61),(62,45),(59,119)]
    • Table 5. Results of quantitative experiments on the combination of detection branch and a priori frame

      View table
      View in Article

      Table 5. Results of quantitative experiments on the combination of detection branch and a priori frame

      实验代号GFLOPSmAP50human bodyballcircle cagesquare cagetyremetal bucketcubecylinderplane
      G115.877.881.284.981.678.764.861.184.471.892.5
      G215.978.688.883.779.782.660.666.987.168.589.7
      G315.977.577.982.380.772.463.967.686.973.792.1
      G415.979.279.981.778.575.264.474.287.376.695.1
      G515.979.389.483.278.683.36371.184.371.290
    • Table 6. Multi-scale confocal convolution comparison experiments

      View table
      View in Article

      Table 6. Multi-scale confocal convolution comparison experiments

      Base Model共焦卷积核GFLOPSmAP50human bodyballcircle cagesquare cagetyremetal bucketcubecylinderplane
      YOLOv5s+特征激活+GIAM-19.580.986.883.884.178.564.380.185.874.890.3
      +1×119.380.885.386.167.385.171.384.589.768.889.5
      +1×1+3×319.481.489.484.178.883.366.187.587.168.787.5
      +1×1+3×3+5×520.880.691.883.47579.167.272.387.280.588.8
      +1×1+3×3+5×5+7×723.783.389.885.779.182.973.185.191.771.291
      +1×1+3×3+5×5+7×7+9×927.678.285.384.97480.266.478.288.661.684.6
    • Table 7. Spatial feature pyramid pooling comparison experiments

      View table
      View in Article

      Table 7. Spatial feature pyramid pooling comparison experiments

      Base Model空间特征金字塔池化GFLOPSmAP50human bodyballcircle cagesquare cagetyremetal bucketcubecylinderplane
      YOLOv5s+特征激活+GIAM+SPPF19.580.986.883.884.178.564.380.185.874.890.3
      +SPP18.581.486.183.681.986.867.573.286.476.890.2
      +SPPFCSPC23.673.978.179.771.676.560.360.485.462.191.2
      +ASPP25.17778.480.172.877.67076.68861.887.9
      +RFB19.080.586.885.878.780.469.780.387.272.283.8
      +SPPCSPC23.675.280.378.673.472.862.471.482.472.383.1
      +CFCRP23.783.389.885.779.182.973.185.191.771.291
    • Table 8. Network model comparison experiment

      View table
      View in Article

      Table 8. Network model comparison experiment

      ModelGFLOPSmAP50human bodyballcircle cagesquare cagetyremetal bucketcubecylinderplane
      SSD[38]347.178.889.190.974.876.462.377.48168.489
      RetinaNet[39]207.968.489.877.559.874.747.475.978.62487.9
      YOLOv5x[40]203.977.476.183.876.872.762.38083.866.295
      Faster RCNN[41]193.871.280.481.177.675.7457081.840.488.7
      YOLOv7[29]103.360.471.574.257.86748.159.872.835.856.4
      YOLOv5m[40]4871.368.681.87961.556.758.985.169.380.7
      DAMO-YOLO[42]3672.765.581.370.270.838.787.885.671.882.2
      YOLOv8s[43]28.281.482.386.581.186.66593.788.553.595
      YOLOXs[44]26.782.488.18875.987.271.779.389.671.490
      YOLOv5s[40]15.877.881.284.981.678.764.861.184.471.892.5
      YOLOv7-tiny[45]13.164.270.384.546.776.835.466.383.341.772.7
      YOLOv3-tiny[41]5.5763.265.273.669.463.237.563.9764872.1
      YOLOv5n[40]4.272.38679.274.577.959.352.881.85880.8
      WFCCMNet23.783.389.885.779.182.973.185.191.771.291
    Tools

    Get Citation

    Copy Citation Text

    Meng-yun HE, Zi-fen HE, Yin-hui ZHANG, Guang-chen CHEN, Feng ZHANG. Weak feature confocal channel regulation for underwater sonar target detection[J]. Chinese Optics, 2024, 17(6): 1281

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 5, 2024

    Accepted: Apr. 26, 2024

    Published Online: Jan. 14, 2025

    The Author Email:

    DOI:10.37188/CO.2024-0031

    Topics