Chinese Optics Letters, Volume. 19, Issue 12, 121407(2021)
VCSEL frequency stabilization for optically pumped magnetometers
[1] J. C. Allred, R. N. Lyman, T. W. Kornack, M. V. Romalis. High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys. Rev. Lett., 89, 13(2002).
[2] J. Osborne, J. Orton, O. Alem, V. Shah. Fully integrated standalone zero field optically pumped magnetometer for biomagnetism. Proc. SPIE, 10548, 105481G(2018).
[3] M. J. Brookes, E. Boto, M. Rea, V. Shah, J. Osborne, N. Holmes, R. M. Hill, J. Leggett, N. Rhodes, R. Bowtwll. Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system. NeuroImage, 236, 118025(2021).
[4] S. Knappe, P. D. D. Schwindt, V. Gerginov, V. Shah, L. Liew, J. Moreland, H. G. Robinson, L. Hollberg, J. Kitching. Microfabricated atomic clocks and magnetometers. J. Opt. A, 8, S318(2006).
[5] P. D. D Schwindt, C. N. Johnson. Atomic magnetometer for human magnetoencephalography(2010).
[6] M. V. Petrenko, S. P. Dmitriev, A. S. Pazgalev, A. E. Ossadtchi, A. K. Vershovskii. Towards the non-zero field cesium magnetic sensor array for magnetoencephalography. IEEE Sens. J., 21, 18626(2021).
[7] Y. Yang, M. Xu, A. Liang, Y. Yin, X. Ma, Y. Gao, X. Ning. A new wearable multichannel magnetocardiogram system with a SERF atomic magnetometer array. Sci. Rep., 11, 5564(2021).
[8] J. Tang, Y. Zhai, L. Cao, Y. Zhang, L. Li, B. Zhao, B. Zhou, B. Han, G. Liu. High-sensitivity operation of a single-beam atomic magnetometer for three-axis magnetic field measurement. Opt. Express, 29, 15641(2021).
[9] L. Xing, Y. Zhai, W. Fan, J. Huang, T. Song, W. Ye, W. Quan. Miniaturized optical rotation detection system based on liquid crystal variable retarder in a K-Rb-21Ne gyroscope. Opt. Express, 27, 38061(2019).
[10] X. Wang, K. Liu, H. Cheng, W. Ren, J. Xiang, J. Ji, X. Peng, Z. Zhang, J. Zhao, M. Ye, L. Li, T. Li, B. Wang, Q. Qu, L. Liu, D. Lü. Optimization of temperature characteristics of a transportable 87Rb atomic fountain clock. Chin. Opt. Lett., 17, 080201(2019).
[11] G. Dong, J. Deng, J. Lin, S. Zhang, H. Lin, Y. Wang. Recent improvements on the pulsed optically pumped rubidium clock at SIOM. Chin. Opt. Lett., 15, 040201(2017).
[12] H. Lin, J. Deng, J. Lin, S. Zhang, Y. Wang. Frequency stability of a pulsed optically pumped atomic clock with narrow Ramsey linewidth. Appl. Opt., 57, 3056(2018).
[13] B. Zhou, G. Lei, L. Chen, W. Wu, Z. Wang, X. Meng, J. Fang. Noise suppression for the detection laser of a nuclear magnetic resonance gyroscope based on a liquid crystal variable retarder. Chin. Opt. Lett., 15, 082302(2017).
[14] Y. Yao, C. Zou, H. Yu, J. Guo, Y. Li, J. Liu. The developing condition analysis of semiconductor laser frequency stabilization technology. J. Semicond., 39, 114004(2018).
[15] M. Salit, J. Kriz, J. Ridley, R. Compton. VCSELS for rubidium D1 (795 nm). Proceedings of the 43rd Annual Precise Time and Time Interval Systems and Applications Meeting, 377(2011).
[16] K. Jiang, J. Wang, X. Tu, M. He, M. Zhan. Polarization spectra of Rb atoms and their application in laser frequency stabilization. Chin. Opt. Lett., 20, 377(2003).
[17] W. Ma, L. Dong, W. Yin, C. Li, S. Jia. Frequency stabilization of diode laser to 1.637 µm based on the methane absorption line. Chin. Opt. Lett., 2, 486(2004).
[18] Y. Han, S. Guo, J. Wang, H. Liu, J. He, J. Wang. Efficient frequency doubling of a telecom 1560 nm laser in a waveguide and frequency stabilization to Rb D2 line. Chin. Opt. Lett., 12, 121401(2014).
[19] D. Su, T. Meng, Z. Ji, J. Yuan, Y. Zhao, L. Xiao, S. Jia. Application of sub-Doppler DAVLL to laser frequency stabilization in atomic cesium. Appl. Opt., 53, 7011(2014).
[20] A. Brillet, P. Cerez, H. Clergeot. Frequency stabilization of He-Ne lasers by saturated absorption. IEEE J. Quantum Electron., 10, 526(1974).
[21] A. Brillet, P. Cerez. Laser frequency stabilization by saturated absorption. J. Phys. Colloq., 42, C8(1981).
[22] M. Ouhayoun, C. J. Bordé. Frequency stabilization of CO2 lasers through saturated absorption in SF6. Metrologia, 13, 149(1977).
[23] J. Wallard. Frequency stabilization of the helium-neon laser by saturated absorption in iodine vapour. J. Phys. E, 5, 926(1972).
[24] V. Shah. Method for stabilizing atomic devices. U.S. Patent(2019).
[25] C. Affolderbach, G. Mileti. A compact laser head with high-frequency stability for Rb atomic clocks and optical instrumentation. Rev. Sci. Instrum., 76, 073108(2005).
[26] C. Affolderbach, C. Andreeva, S. S. Cartaleva, G. Mileti, D. G. Slavov. Frequency stability comparison of diode lasers locked to Doppler and sub-Doppler resonances. Eighth International Conference on Laser and Laser Information Technologies, 396(2004).
[27] J. Wang, W. Fan, K. Yin, Y. Yan, B. Zhou, X. Song. Combined effect of pump-light intensity and modulation field on the performance of optically pumped magnetometers under zero-field parametric modulation. Phys. Rev. A, 101, 053427(2020).
[28] R. Ciuryło. Shapes of pressure- and Doppler-broadened spectral lines in the core and near wings. Phys. Rev. A, 58, 1029(1998).
[29] R. Zhang, Y. Ding, Y. Yang, Z. Zheng, J. Chen, X. Peng, T. Wu, H. Guo. Active magnetic-field stabilization with atomic magnetometer. Sensors, 20, 4241(2020).
[30] S. P. Krzyzewski, A. R. Perry, V. Gerginov, S. Knappe. Characterization of noise sources in a microfabricated single-beam zero-field optically-pumped magnetometer. J. Appl. Phys., 126, 044504(2019).
Get Citation
Copy Citation Text
Yeguang Yan, Gang Liu, Haixiao Lin, Kaifeng Yin, Kun Wang, Jixi Lu, "VCSEL frequency stabilization for optically pumped magnetometers," Chin. Opt. Lett. 19, 121407 (2021)
Category: Lasers, Optical Amplifiers, and Laser Optics
Received: Aug. 3, 2021
Accepted: Oct. 14, 2021
Posted: Oct. 15, 2021
Published Online: Nov. 18, 2021
The Author Email: Jixi Lu (lujixi@buaa.edu.cn)