Optics and Precision Engineering, Volume. 29, Issue 11, 2703(2021)
Object detection algorithm based on image and point cloud fusion with N3D_DIOU
[1] CHEN X Z, MA H M, WAN J et al. Multi-view 3D object detection network for autonomous driving[C], 6526-6534(2017).
[2] [2] 2郭保青, 余祖俊, 张楠, 等. 铁路场景三维点云分割与分类识别算法[J]. 仪器仪表学报, 2017, 38(9): 2103-2111. doi: 10.3969/j.issn.0254-3087.2017.09.002GUOB Q, YUZ J, ZHANGN, et al. 3D point cloud segmentation, classification and recognition algorithm of railway scene[J]. Chinese Journal of Scientific Instrument, 2017, 38(9): 2103-2111. (in Chinese). doi: 10.3969/j.issn.0254-3087.2017.09.002
[3] HE K M, ZHANG X Y, REN S Q et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916(2015).
[4] GIRSHICK R, DONAHUE J, DARRELL T et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. OH, 580-587(2014).
[5] GIRSHICK R. Fast R-CNN[C], 1440-1448(2015).
[6] REN S Q, HE K M, GIRSHICK R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).
[7] REDMON J, DIVVALA S, GIRSHICK R et al. You only look once: unified, real-time object detection[C], 779-788(2016).
[8] GUO B Q, GENG G, ZHU L Q et al. High-speed railway intruding object image generating with generative adversarial networks[J]. Sensors, 19, 3075(2019).
[9] [9] 9王建林, 付雪松, 黄展超, 等. 改进YOLOv2卷积神经网络的多类型合作目标检测[J]. 光学 精密工程, 2020, 28(1): 251-260. doi: 10.3788/ope.20202801.0251WANGJ L, FUX S, HUANGZH CH, et al. Multi-type cooperative targets detection using improved YOLOv2 convolutional neural network[J]. Opt. Precision Eng., 2020, 28(1): 251-260. (in Chinese). doi: 10.3788/ope.20202801.0251
[10] ARNOLD E, AL-JARRAH O Y, DIANATI M et al. A survey on 3D object detection methods for autonomous driving applications[J]. IEEE Transactions on Intelligent Transportation Systems, 20, 3782-3795(2019).
[11] SIMON M, MILZ S, AMENDE K et al. Complex-YOLO: an Euler-region-proposal for real-time 3D object detection on point clouds[C], 197-209(2019).
[12] ALI W, ABDELKARIM S, ZIDAN M et al. YOLO3D: end-to-end real-time 3D oriented object bounding box detection from LiDAR point cloud[C], 716-728(2019).
[13] YANG B, LUO W J, URTASUN R. PIXOR: real-time 3D object detection from point clouds[C], 7652-7660(2018).
[15] ZHOU Y, TUZEL O. VoxelNet: end-to-end learning for point cloud based 3D object detection[C], 4490-4499(2018).
[16] YAN Y, MAO Y X, LI B. SECOND: sparsely embedded convolutional detection[J]. Sensors, 18, 3337(2018).
[17] LIANG M, YANG B, CHEN Y et al. Multi-task multi-sensor fusion for 3D object detection[C], 7337-7345(2019).
[18] WU T E, TSAI C C, GUO J N. LiDAR/camera sensor fusion technology for pedestrian detection[C], 1675-1678(2017).
[19] CHARLES R Q, HAO S, MO K C et al. PointNet: deep learning on point sets for 3D classification and segmentation[C], 77-85(2017).
[20] EVERINGHAM M, GOOL L, WILLIAMS C K I et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 88, 303-338(2010).
[21] LIN T Y, DOLLÁR P, GIRSHICK R et al. Feature pyramid networks for object detection[C], 936-944(2017).
[22] REZATOFIGHI H, TSOI N, GWAK J et al. Generalized intersection over union: a metric and a loss for bounding box regression[C], 658-666(2019).
[23] ZHENG Z H, WANG P, LIU W et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 12993-13000(2020).
[24] WANG Z X, JIA K. Frustum ConvNet: sliding Frustums to aggregate local point-wise features for amodal 3D object detection[C], 1742-1749(2019).
[25] LIN T Y, GOYAL P, GIRSHICK R et al. Focal loss for dense object detection[C], 2999-3007(2017).
[26] YU J H, JIANG Y N, WANG Z Y et al. UnitBox: an advanced object detection network[C], 516-520(2016).
[27] ZHOU D F, FANG J, SONG X B et al. IoU loss for 2D/3D object detection[C], 85-94(2019).
[28] LIANG M, YANG B, WANG S L et al[M]. Deep Continuous Fusion for Multi-sensor 3D Object Detection, 663-678(2018).
[30] LANG A H, VORA S, CAESAR H et al. PointPillars: fast encoders for object detection from point clouds[C], 12689-12697(2019).
[31] QI C R, LIU W, WU C X et al. Frustum PointNets for 3D object detection from RGB-D data[C], 918-927(2018).
Get Citation
Copy Citation Text
Bao-qing GUO, Guang-fei XIE. Object detection algorithm based on image and point cloud fusion with N3D_DIOU[J]. Optics and Precision Engineering, 2021, 29(11): 2703
Category: Information Sciences
Received: May. 11, 2021
Accepted: --
Published Online: Dec. 10, 2021
The Author Email: Bao-qing GUO (bqguo@bjtu.edu.cn)