Journal of Semiconductors, Volume. 41, Issue 1, 010301(2020)
Quantum cascade lasers: from sketch to mainstream in the mid and far infrared
[1] R Kazarinov, R A Suris. Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice. Sov Phys Semicond, 5, 707(1971).
[2] J Faist, F Capasso, D L Sivco et al. Quantum cascade laser. Science, 264, 553(1994).
[3] G Scamarcio, F Capasso, C Sirtori et al. High-power infrared (8-micrometer wavelength) superlattice lasers. Science, 276, 773(1997).
[4] R Kohler, A Tredicucci, F Beltram et al. Terahertz semiconductor heterostructure laser. Nature, 417, 156(2002).
[5] M Beck, D Hofstetter, T Aellen et al. Continuous wave operation of a mid-Infrared semiconductor laser at room temperature. Science, 295, 301(2002).
[6] M Rochat, D Hofstetter, M Beck et al. Long-wavelength 16 mm, room-temperature, single-frequency quantum-cascade lasers based on a bound-to-continuum transition. Appl Phys Lett, 79, 4271(2001).
[7] G Scalari, L Ajili, J Faist et al. Far-infrared (87
[8] Y Bai, N Bandyopadhyay, S Tsao et al. Room temperature quantum cascade lasers with 27% wall plug efficiency. Appl Phys Lett, 98, 181102(2011).
[9] A Lyakh, R Maulini, A Tsekoun et al. Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency. Opt Express, 20, 24272(2012).
[10] F Xie, C Caneau, H P Leblanc et al. Watt-level room temperature continuous-wave operation of quantum cascade lasers with λ >10
[11] S Fathololoumi, E Dupont, C E I Chan et al. Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling. Opt Express, 20, 3866(2012).
[12] L Bosco, M Franckie, G Scalari et al. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K. Appl Phys Lett, 115, 010601(2019).
[13] M A Belkini, F Capasso, A Belyanin et al. Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation. Nat Photonics, 1, 288(2007).
[14] Q Y Lu, N Bandyopadhyay, S Slivken et al. Continuous operation of a monolithic semiconductor terahertz source at room temperature. Appl Phys Lett, 104, 221105(2014).
[15] A Hugi, G Villares, B Blaser et al. Mid-infrared frequency comb based on a quantum cascade laser. Nature, 492, 229(2012).
[16] Q Lu, D Wu, S Slivken et al. High efficiency quantum cascade laser frequency comb. Sci Rep, 7, 43806(2017).
[17] D Kazakov, M Piccardo, Y Wang et al. Self-starting harmonic frequency comb generation in a quantum cascade laser. Nat Photonics, 11, 789(2017).
[18] N Bandyopadhyay, Y Bai, S Tsao et al. Room temperature continuous wave operation of
[19] S Niu, J Liu, F Cheng et al. 14
[20] M Bahriz, G Lollia, A N Baranov et al. High temperature operation of far infrared (λ ≈ 20
[21] E Bellotti, K Driscoll, T D Moustakas et al. Monte Carlo study of GaN versus GaAs terahertz quantum cascade structures. Appl Phys Lett, 92, 101112(2008).
[22] N S Wingreen, C A Stafford. Quantum-dot cascade laser: proposal for an ultralow-threshold semiconductor laser. IEEE J Quantum Electron, 33, 1170(1997).
[23] B A Burnett, B S Williams. Density matrix model for polarons in a terahertz quantum dot cascade laser. Phys Rev B, 90, 155309(2014).
[24] N Zhuo, J Zhang, F Wang et al. Room temperature continuous wave quantum dot cascade laser emitting at 7.2
Get Citation
Copy Citation Text
Ning Zhuo, Fengqi Liu, Zhanguo Wang. Quantum cascade lasers: from sketch to mainstream in the mid and far infrared[J]. Journal of Semiconductors, 2020, 41(1): 010301
Category: Comments and opinions
Received: --
Accepted: --
Published Online: Sep. 10, 2021
The Author Email: