Electronics Optics & Control, Volume. 32, Issue 6, 31(2025)
A Lightweight UAV Tracking Algorithm Combining Siamese Network with Transformer
[2] [2] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]//European Conference on Computer Vision. Cham: Springer, 2016: 850-865.
[3] [3] CHEN Z, ZHONG B, LI G, et al. Siamese box adaptive network for visual tracking[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 6667-6676.
[4] [4] HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1577-1586.
[5] [5] LI B, WU W, WANG Q, et al. SiamRPN++: evolution of Siamese visual tracking with very deep networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4277-4286.
[6] [6] CUI Y, JIANG C, WANG L, et al. MixFormer: end-to-end tracking with iterative mixed attention[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 13598-13608.
[7] [7] KENDALL A, GAL Y, CIPOLLA R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7482-7491.
[8] [8] FAN H, LIN L T, YANG F, et al. LaSOT: a high-quality benchmark for large-scale single object tracking[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5369-5378.
[9] [9] MULLER M, BIBI A, GIANCOLA S, et al. TrackingNet: a large-scale dataset and benchmark for object tracking in the wild[C]//European Conference on Computer Vision. Cham: Springer, 2018: 310-327.
[10] [10] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//European Conference on Computer Vision. Cham: Springer, 2014: 740-755.
[11] [11] HUANG L H, ZHAO X, HUANG K Q. GOT-10k: a large high-diversity benchmark for generic object tracking in the wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1562-1577.
[12] [12] MUELLER M, SMITH N, GHANEM B. A benchmark and simulator for UAV tracking[C]//European Conference on Computer Vision. Cham: Springer, 2016: 445-461.
[13] [13] LIN T Y, DOLLR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944.
[14] [14] FU Z H, FU Z H, LIU Q J, et al. SparseTT: visual tracking with sparse Transformers[C]//Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence. Vienna: IJCAI, 2022: 905-912.
[15] [15] WEI X, BAI Y F, ZHENG Y C, et al. Autoregressive visual tracking[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 9697-9706.
[16] [16] GUO D Y, WANG J, CUI Y, et al. SiamCAR: Siamese fully convolutional classification and regression for visual tracking[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 6268-6276.
[17] [17] CAO Z A, FU C H, YE J J, et al. HiFT: hierarchical feature Transformer for aerial tracking[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. [S. l.]: IEEE, 2021: 15457-15466.
[18] [18] CAO Z A, FU C H, YE J J, et al. SiamAPN++: Siamese attentional aggregation network for real-time UAV tracking[C]//Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. Prague: IEEE, 2021: 3086-3092.
[19] [19] CAO Z A, HUANG Z Y, PAN L, et al. TCTrack: temporal contexts for aerial tracking[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 14778-14788.
[20] [20] GUO D Y, SHAO Y Y, CUI Y, et al. Graph attention tracking[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 9538-9547.
[21] [21] CUI Y T, SONG T H, WU G S, et al. MixFormerV2: efficient fully Transformer tracking[C]//Proceedings of the 37th Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc. , 2023: 58736-58751.
Get Citation
Copy Citation Text
LI Huayao, ZHONG Xiaoyong, YANG Zhineng, YANG Hao. A Lightweight UAV Tracking Algorithm Combining Siamese Network with Transformer[J]. Electronics Optics & Control, 2025, 32(6): 31
Category:
Received: Apr. 5, 2024
Accepted: Jun. 12, 2025
Published Online: Jun. 12, 2025
The Author Email: