Journal of Synthetic Crystals, Volume. 52, Issue 4, 645(2023)

Ni2P@2D Phosphorene Bifunctional Electrocatalyst for Photovoltaic Assisted Overall Water Splitting to Hydrogen Evolution

WANG Juan1, LIANG Junhui1, FAN Haoyang2, LIU Hongming1, CHEN Da1, CHEN Huayu1, HUANG Yuexiang1, and QIN Laishun1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(32)

    [1] [1] ZHAO C X, LIU J N, WANG J, et al. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts[J]. Chemical Society Reviews, 2021, 50(13): 7745-7778.

    [2] [2] LIU F Y, WANG M Y, LIU X L, et al. A rapid and robust light-and-solution-triggered in situ crafting of organic passivating membrane over metal halide perovskites for markedly improved stability and photocatalysis[J]. Nano Letters, 2021, 21(4): 1643-1650.

    [3] [3] LIANG J H, CHEN D, YAO X, et al. Recent progress and development in inorganic halide perovskite quantum dots for photoelectrochemical applications[J]. Small, 2020, 16(15): e1903398.

    [4] [4] PAN J H, LIANG J H, XU Z X, et al. Rationally designed ternary CdSe/WS2/g-C3N4 hybrid photocatalysts with significantly enhanced hydrogen evolution activity and mechanism insight[J]. International Journal of Hydrogen Energy, 2021, 46(59): 30344-30354.

    [5] [5] KRANZ C, WCHTLER M. Characterizing photocatalysts for water splitting: from atoms to bulk and from slow to ultrafast processes[J]. Chemical Society Reviews, 2021, 50(2): 1407-1437.

    [6] [6] WANG M J, SHI B, ZHANG Q X, et al. Integrated and unassisted solar water-splitting system by monolithic perovskite/silicon tandem solar cell[J]. Solar RRL, 2022, 6(2): 2100748.

    [7] [7] LIN R X, XU J, WEI M Y, et al. All-perovskite tandem solar cells with improved grain surface passivation[J]. Nature, 2022, 603(7899): 73-78.

    [8] [8] HOU S J, KLUGE R M, HAID R W, et al. A review on experimental identification of active sites in model bifunctional electrocatalytic systems for oxygen reduction and evolution reactions[J]. ChemElectroChem, 2021, 8(18): 3433-3456.

    [9] [9] SONG J J, WEI C, HUANG Z F, et al. A review on fundamentals for designing oxygen evolution electrocatalysts[J]. Chemical Society Reviews, 2020, 49(7): 2196-2214.

    [10] [10] WANG B, WANG M Y, LIU F Y, et al. Ti3 C2: an ideal Co-catalyst?[J]. Angewandte Chemie, 2020, 59(5): 1914-1918.

    [11] [11] GAO F, HE J Q, WANG H W, et al. Te-mediated electro-driven oxygen evolution reaction[J]. Nano Research Energy, 2022, 1: e9120029.

    [12] [12] LIU X, CHEN K, LI X Y, et al. Electron matters: recent advances in passivation and applications of black phosphorus[J]. Advanced Materials, 2021, 33(50): e2005924.

    [13] [13] ZHANG Q Z, HUANG S Y, DENG J J, et al. Ice-assisted synthesis of black phosphorus nanosheets as a metal-free photocatalyst: 2D/2D heterostructure for broadband H2 evolution[J]. Advanced Functional Materials, 2019, 29(28): 1902486.

    [14] [14] WU T, DONG C L, SUN D, et al. Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts[J]. Nanoscale, 2021, 13(3): 1581-1595.

    [15] [15] CHANG Y K, NIE A M, YUAN S J, et al. Liquid-exfoliation of S-doped black phosphorus nanosheets for enhanced oxygen evolution catalysis[J]. Nanotechnology, 2019, 30(3): 035701.

    [16] [16] WU T, ZHANG S N, BU K J, et al. Nickel nitride-black phosphorus heterostructure nanosheets for boosting the electrocatalytic activity towards the oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2019, 7(38): 22063-22069.

    [17] [17] LI X Y, XIAO L P, ZHOU L, et al. Adaptive bifunctional electrocatalyst of amorphous CoFe oxide @ 2D black phosphorus for overall water splitting[J]. Angewandte Chemie, 2020, 59(47): 21106-21113.

    [18] [18] WANG X, RAGHUPATHY R K M, QUEREBILLO C J, et al. Interfacial covalent bonds regulated electron-deficient 2D black phosphorus for electrocatalytic oxygen reactions[J]. Advanced Materials, 2021, 33(20): e2008752.

    [19] [19] YU L, ZHOU H Q, SUN J Y, et al. Amorphous NiFe layered double hydroxide nanosheets decorated on 3D nickel phosphide nanoarrays: a hierarchical core-shell electrocatalyst for efficient oxygen evolution[J]. Journal of Materials Chemistry A, 2018, 6(28): 13619-13623.

    [20] [20] YU F, ZHOU H Q, HUANG Y F, et al. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting[J]. Nature Communications, 2018, 9(1): 1-9.

    [21] [21] GUO Z N, ZHANG H, LU S B, et al. From black phosphorus to phosphorene: basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics[J]. Advanced Functional Materials, 2015, 25(45): 6996-7002.

    [22] [22] HANLON D, BACKES C, DOHERTY E, et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics[J]. Nature Communications, 2015, 6(1): 1-11.

    [23] [23] ZHU M S, OSAKADA Y, KIM S, et al. Black phosphorus: a promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution[J]. Applied Catalysis B: Environmental, 2017, 217: 285-292.

    [24] [24] LIU H, NEAL A T, ZHU Z, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041.

    [25] [25] WANG X M, JONES A M, SEYLER K L, et al. Highly anisotropic and robust excitons in monolayer black phosphorus[J]. Nature Nanotechnology, 2015, 10(6): 517-521.

    [26] [26] YIN J L, LEE H U, PARK J Y. An electrodeposited graphite oxide/cobalt hydroxide/chitosan ternary composite on nickel foam as a cathode material for hybrid supercapacitors[J]. RSC Advances, 2016, 6(41): 34801-34808.

    [27] [27] ZHANG Q X, LI T T, LIANG J H, et al. Highly wettable and metallic NiFe-phosphate/phosphide catalyst synthesized by plasma for highly efficient oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2018, 6(17): 7509-7516.

    [28] [28] WU B, GONG S, LIN Y C, et al. A unique NiOOH@FeOOH heteroarchitecture for enhanced oxygen evolution in saline water[J]. Advanced Materials, 2022, 34(43): e2108619.

    [29] [29] ZHU M S, ZHAI C Y, FUJITSUKA M, et al. Noble metal-free near-infrared-driven photocatalyst for hydrogen production based on 2D hybrid of black Phosphorus/WS2[J]. Applied Catalysis B: Environmental, 2018, 221: 645-651.

    [30] [30] FU Q, HAN J C, WANG X J, et al. 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis[J]. Advanced Materials, 2021, 33(6): e1907818.

    [31] [31] NING P, LIANG J H, LI L H, et al. In situ growth of Z-scheme CuS/CuSCN heterojunction to passivate surface defects and enhance charge transport[J]. Journal of Colloid and Interface Science, 2021, 590: 407-414.

    [32] [32] LIANG J H, TAN H R, LIU M, et al. A thin-film silicon based photocathode with a hydrogen doped TiO2 protection layer for solar hydrogen evolution[J]. Journal of Materials Chemistry A, 2016, 4(43): 16841-16848.

    Tools

    Get Citation

    Copy Citation Text

    WANG Juan, LIANG Junhui, FAN Haoyang, LIU Hongming, CHEN Da, CHEN Huayu, HUANG Yuexiang, QIN Laishun. Ni2P@2D Phosphorene Bifunctional Electrocatalyst for Photovoltaic Assisted Overall Water Splitting to Hydrogen Evolution[J]. Journal of Synthetic Crystals, 2023, 52(4): 645

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 4, 2023

    Accepted: --

    Published Online: Jun. 11, 2023

    The Author Email:

    DOI:

    CSTR:32186.14.

    Topics