Journal of Infrared and Millimeter Waves, Volume. 44, Issue 3, 431(2025)

Sparsity and self-similarity priors guided deep learning for blind image super-resolution

Sun-Yi GE1,2,3, Xiao-Wei LUO3, Shi-Yang FENG1,2, and Bin WANG1,2、*
Author Affiliations
  • 1Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University,Shanghai 200433, China
  • 2Image and Intelligence Laboratory, School of Information Science and Technology, Fudan University,Shanghai 200433, China
  • 3Media Technology Resources Department, UNISOC (Shanghai)Technologies Co. Ltd,Shanghai 200120, China
  • show less
    Figures & Tables(13)
    The structure diagram of DLKE Module
    The overall framework of DLS3P method
    Structure of a neural network layer that simulates one iteration of FISTA
    The structure diagram of DMFB
    PSNR values variation curve with iterations on Urban100 and Manga109 datasets
    Visual results of Img 61 in Urban100 dataset
    Visual results of Img 27 in DIV2KRK dataset
    • Table 1. The pseudocode for the DLS3P algorithm in training process

      View table
      View in Article

      Table 1. The pseudocode for the DLS3P algorithm in training process

      DLS3P算法训练过程的伪代码
      输入:低分辨率图像LR
      DUDF模块展开层数K,DFRG组数G,DMFB块数B
      训练的总迭代次数N,对称损失权重μ
      循环迭代N次:
      步骤1:k=DLKE(LR)
      步骤2:gy=FE(LR)
      步骤3:R=DUDF(k,gy)
      步骤4:SR=DMLR(gy,R)
      步骤5:Ltotal=Lker+Lpix+μLsym
      步骤6:反向传播更新参数
      输出:训练好的网络
    • Table 2. Quantitative results of different algorithms on Gaussian8 dataset

      View table
      View in Article

      Table 2. Quantitative results of different algorithms on Gaussian8 dataset

      MethodScaleSet5Set14BSD100Urban100Manga109Average
      PSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIMPSNRSSIM
      Bicubic228.820.857726.020.763425.920.731023.140.725825.600.849825.900.7855
      CARN430.990.877928.100.787926.780.728625.270.763026.860.860627.600.8036
      Deblur31+CARN424.200.749621.120.617022.690.647118.890.589521.540.794621.690.6796
      CARN4+Deblur3131.270.897429.030.826728.720.803325.620.798129.580.913428.840.8478
      Bicubic+ZSSR1331.080.878628.350.793327.920.763225.250.761828.050.876928.130.8148
      IKC1637.190.952632.940.902431.510.879029.850.892836.930.966733.680.9187
      DANv11937.340.952633.080.904131.760.885830.600.906037.230.971034.000.9239
      DANv22037.600.954433.440.909432.000.890431.430.917438.070.973434.510.9290
      DCLS2337.630.955433.460.910332.040.890731.690.920238.310.974034.630.9301
      DLS3P(Ours)37.640.954633.650.910532.110.891631.900.922038.510.974434.760.9306
      Bicubic326.210.776624.010.666224.250.635621.390.620322.980.757623.770.6913
      CARN427.260.785525.060.667625.850.656622.670.632323.850.762024.940.7008
      Deblur31+CARN419.050.522617.610.455820.510.533116.720.589518.380.611818.450.5426
      CARN4+Deblur3130.310.856227.570.753127.140.715224.450.724127.670.859227.430.7816
      Bicubic+ZSSR1328.250.798926.150.694226.060.663323.260.653425.190.791425.780.7202
      IKC1633.060.914629.380.823328.530.789924.430.830232.430.931629.570.8579
      DANv11934.040.919930.090.828728.940.791927.650.835233.160.938230.780.8628
      DANv22034.120.920930.200.830929.030.794827.830.839533.280.940030.890.8652
      DCLS2334.210.921830.290.832929.070.795628.030.844433.540.941431.030.8672
      DLS3P(Ours)34.150.921930.310.834129.120.797928.210.848633.810.942931.120.8690
      Bicubic424.570.710822.790.603223.290.578620.350.553221.500.693322.500.6278
      CARN426.570.742024.620.622624.790.596322.170.586521.850.683424.000.6462
      Deblur31+CARN418.100.484316.590.399418.460.448115.470.387216.780.537117.080.4512
      CARN4+Deblur3128.690.809226.400.692626.100.652823.460.659725.840.803526.100.7236
      Bicubic+ZSSR1326.450.727924.780.626824.970.598922.110.580523.530.724024.370.6516
      IKC1631.670.882928.310.764327.370.719225.330.750428.910.878228.320.7990
      DANv11931.890.886428.420.768727.510.724825.860.772130.500.903728.840.8111
      DANv22032.000.888528.500.771527.560.727725.940.774830.450.903728.890.8132
      AdaTarget1731.580.881428.140.762627.430.721625.720.768329.970.895528.570.8059
      DCLS2332.120.889028.540.772827.600.728526.150.780930.860.908629.050.8160
      DLS3P(Ours)32.130.890628.620.775227.630.730526.240.784930.940.908629.110.8180
    • Table 3. Quantitative results of different algorithms on DIV2KRK dataset

      View table
      View in Article

      Table 3. Quantitative results of different algorithms on DIV2KRK dataset

      MethodDIV2KRK
      PSNRSSIM
      Bicubic25.330.679 5
      EDSR2(2017)25.640.692 8
      DBPN3(2018)25.580.691 0
      RCAN5(2018)25.660.693 6
      Bicubic+ZSSR13(2019)25.610.691 1
      KernelGAN9+ZSSR13(2019)26.810.731 6
      KernelGAN9+SRMD14(2019)27.510.726 5
      KernelGAN9+USRNet15(2020)20.060.535 9
      IKC16(2019)27.700.766 8
      DANv119(2020)27.550.758 2
      DANv220(2021)28.740.789 3
      AdaTarget17(2021)28.420.785 4
      KOALAnet18(2021)27.770.763 7
      DCLS23(2022)28.990.794 6
      KernelDAN21(2023)28.900.796 1
      DLS3P(Ours)29.080.800 7
    • Table 4. PSNR values variation with the number of deconvolution feature channels

      View table
      View in Article

      Table 4. PSNR values variation with the number of deconvolution feature channels

      反卷积特征通道数16 (DCLS)163264
      Urban10031.6931.7231.7831.80
    • Table 5. PSNR values variation with different receptive field features

      View table
      View in Article

      Table 5. PSNR values variation with different receptive field features

      9×9特征15×15特征21×21特征Urban100
      ××31.78
      ×31.85
      31.90
    • Table 6. Comparison of the parameter and computational complexity among the different models

      View table
      View in Article

      Table 6. Comparison of the parameter and computational complexity among the different models

      方法参数量 (M)FLOPs (G)
      IKC (2019)5.292178.72
      DANv1 (2020)4.33926.72
      DANv2 (2021)4.71918.12
      DCLS (2022)19.05-
      DLS3P (Ours)34.401224.00
    Tools

    Get Citation

    Copy Citation Text

    Sun-Yi GE, Xiao-Wei LUO, Shi-Yang FENG, Bin WANG. Sparsity and self-similarity priors guided deep learning for blind image super-resolution[J]. Journal of Infrared and Millimeter Waves, 2025, 44(3): 431

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Interdisciplinary Research on Infrared Science

    Received: Oct. 22, 2024

    Accepted: --

    Published Online: Jul. 9, 2025

    The Author Email: Bin WANG (wangbin@fudan.edu.cn)

    DOI:10.11972/j.issn.1001-9014.2025.03.013

    Topics