INFRARED, Volume. 45, Issue 11, 40(2024)
The Frequency Response of Electro-Optic Sampling Detection Technique Based on the Lithium Niobate Crystal in Near-Infrared Band and Its Application Analyzation
[2] [2] Hebling J, Yeh K L, Hoffmann M C, et al. High-Power THz Generation, THz Nonlinear Optics, and THz Nonlinear Spectroscopy [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(2): 345-353.
[4] [4] Valdmanis J A, Mourou G A, Gabel C W. Subpicosecond electrical sampling [J]. IEEE Journal of Quantum Electronics, 1983, 19: 664-667.
[5] [5] Wu Q, Zhang X C. Free-space electro-optic sampling of terahertz beams [J]. Appl Phys Lett, 1995, 67(24): 3523-3525.
[6] [6] Keiber S, Shawn S, Alexander S, et al. Electro-optic sampling of mid-to-near-infrared waveforms [C]. San Jose: 2015 Conference on Lasers and Electro-Optics (CLEO), 2015.
[7] [7] Khenata R, Bouhemadou A, Sahnoun M, et al. Electronic and optical properties of ZnS, ZnSe and ZnTe under 12 pressure [J]. Comp Mater Sci, 2006, 38(2): 29-38.
[8] [8] Wu Q, Zhang X C. Terahertz broadband GaP electro-optic sensor [J]. Appl Phys Lett, 1997, 70(14): 1784-1786.
[12] [12] Donald G J, William H C, Glenn L, et al. Some optical properties of KTP, LiIO3, and LiNbO3 [J]. J Quantum Electron, 1988, 24(11): 2231-2237.
[13] [13] Hoffmann M C, Fulop J A. Intense ultrashort terahertz pulses: generation and applications [J]. J Phys D: Appl Phys, 2011, 44: 083001.
[14] [14] Ghimire S, Ndabashimiye G, DiChiara A D, e t al. Strong-field and attosecond physics in solids [J]. J Phys B: At Mol Opt, 2014, 47: 204030.
[15] [15] Hohenleutner M, Langer F, Schubert O, et al. Real-time observation of interfering crystal electrons in high-harmonic generation [J]. Nature, 2015, 523(7562): 572-575.
[16] [16] Wu Q, Zhang X C. Free-space electro-optics sampling of mid-infrared pulses [J]. Appl Phys Lett, 1997, 71(10): 1285-1286.
[17] [17] Kbler C, Huber R, Tbel S, et al. Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: Approaching the near infrared [J]. Appl Phys Lett, 2004, 85(16): 3360-3362.
[18] [18] Li Q S, Wang J Y, Sun C M, et al. Frequency response of terahertz electro-optic sampling detection technology with thin GaSe crystal [J]. Phys Scr, 2023, 98: 125942.
[19] [19] Keiber S, Sederberg S, Schwarz A, et al. Electro-optic sampling of near-infrared waveforms [J]. Nature Photonics, 2016, 10(3): 159-162.
[20] [20] Zelmon D E, Small D L, Jundt D. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate [J]. J Opt Soc Am B, 1997, 14(12): 3319-3322.
[21] [21] Casabuoni S, Schlarb H, Schmidt B, et al. Numerical studies on the electro-optic detection of femtosecond electron bunches [J]. Phys Rev ST Accel Beams, 2008, 11(7): 072802.
[24] [24] Abarkan M, Salvestrini J P, Fontana M D, et al. Frequency and wavelength dependences of electro-optic coefficients in inorganic crystals [J]. Appl Phys B, 2003, 76: 765-769.
[26] [26] Nakatani H, Bosenberg W, Cheng L K, et al. Linear electro-optic effect in barium metaborate [J]. Appl Phys Lett, 1988, 52(16): 1288-1290.
Get Citation
Copy Citation Text
WANG Jing-yi, YU Jian-xiong, HUANG Bin, LIU Xiang, DU Hai-wei. The Frequency Response of Electro-Optic Sampling Detection Technique Based on the Lithium Niobate Crystal in Near-Infrared Band and Its Application Analyzation[J]. INFRARED, 2024, 45(11): 40
Category:
Received: May. 6, 2024
Accepted: Dec. 25, 2024
Published Online: Dec. 25, 2024
The Author Email: DU Hai-wei (haiweidu@nchu.edu.cn)