Journal of Inorganic Materials, Volume. 39, Issue 1, 32(2024)

Research Progress on Hard Carbon Anode for Li/Na-ion Batteries

Mengfei HU1,2, Liping HUANG1, He LI2, Guojun ZHANG1、*, and Houzheng WU2、*
Author Affiliations
  • 11. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Material, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
  • 22. SIAMC Advanced Materials Corporation, Huzhou 313100, China
  • show less
    References(73)

    [1] LU J, CHEN Z W, PAN F et al. High-performance anode materials for rechargeable lithium-ion batteries[J]. Electrochem. Energy Rev., 1: 35(2018).

    [2] DOU X W, HASA I, SAUREL D et al. Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry[J]. Mater. Today, 23: 87(2019).

    [5] FROMM O, HECKMANN A, RODEHORST U C et al. Carbons from biomass precursors as anode materials for lithium ion batteries: new insights into carbonization and graphitization behavior and into their correlation to electrochemical performance[J]. Carbon, 128: 147(2018).

    [6] MARTÍNEZ-SANZ M, PETTOLINO F, FLANAGAN B et al. Structure of cellulose microfibrils in mature cotton fibres[J]. Carbohydr. Polym., 175: 450(2017).

    [7] LEE C M, KAFLE K, BELIAS D W et al. Comprehensive analysis of cellulose content, crystallinity, and lateral packing in gossypium hirsutum and gossypium barbadense cotton fibers using sum frequency generation, infrared and Raman spectroscopy, and X-ray diffraction[J]. Cellulose, 22: 971(2015).

    [8] CHEN Y Y, WANG Q, CHEN N J et al. Internally-externally molecules-scissored ramie carbon for high performance electric double layer supercapacitors[J]. Electrochim. Acta, 439: 141583(2023).

    [9] GHOSH S, SANTHOSH R, JENIFFER S et al. Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes[J]. Sci. Rep., 9: 16315(2019).

    [10] ZHU Y E, GU H C, CHEN Y N et al. Hard carbon derived from corn straw piths as anode materials for sodium ion batteries[J]. Ionics, 24: 1075(2018).

    [12] ZHANG H M, ZHANG W F, MING H et al. Design advanced carbon materials from lignin-based interpenetrating polymer networks for high performance sodium-ion batteries[J]. Chem. Eng. J., 341: 280(2018).

    [13] CHANG Z Z, YU B J, WANG C Y et al. Influence of H2 reduction on lignin-based hard carbon performance in lithium ion batteries[J]. Electrochim. Acta, 176: 1352(2015).

    [14] JAYARAMAN S, JAIN A, ULAGANATHAN M et al. Li-ion vs. Na-ion capacitors: a performance evaluation with coconut shell derived mesoporous carbon and natural plant based hard carbon[J]. Chem. Eng. J., 316: 506(2017).

    [15] JAIN A, ARAVINDAN V, JAYARAMAN S et al. Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors[J]. Sci. Rep., 3: 3002(2013).

    [16] GÓMEZ-URBANO J L, MORENO-FERNÁNDEZ G, ARNAIZ M et al. Chemical, graphene-coffee waste derived carbon composites as electrodes for optimized lithium ion capacitors[J]. Carbon, 162: 273(2020).

    [17] WANG L, SCHNEPP Z, TITIRICI M M et al. Rice husk-derived carbon anodes for lithium ion batteries[J]. J. Mater. Chem. A, 1: 5269(2013).

    [20] NI J F, HUANG Y Y, GAO L J. A high-performance hard carbon for Li-ion batteries and supercapacitors application[J]. J. Power Sources, 223: 306(2013).

    [22] LI Y, HU Y, LI H et al. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries[J]. J. Mater. Chem. A, 4: 96(2016).

    [23] LI Y, MU L, HU Y et al. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries[J]. Energy Storage Mater., 2: 139(2016).

    [25] DOEFF M M, MA Y P, VISCO S J et al. Electrochemical insertion of sodium into carbon[J]. J. Electrochem. Soc., 140: L169(1993).

    [26] STEVENS D A, DAHN J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. J. Electrochem. Soc., 147: 1271(2000).

    [31] DAHN J R, ZHENG T, LIU Y H et al. Mechanisms for lithium insertion in carbonaceous materials[J]. Science, 270: 590(1995).

    [32] STEVENSA D A, DAHN J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. J. Electrochem. Soc., 148: A803(2001).

    [33] IRISARRI E, PONROUCH A, PALACIN M R. Review-hard carbon negative electrode materials for sodium-ion batteries[J]. J. Electrochem. Soc., 162: A2476(2015).

    [39] CHEN X Y, LIU C Y, FANG Y J et al. Understanding of the sodium storage mechanism in hard carbon anodes[J]. Carbon Energy, 4: 1133(2021).

    [41] ZHENG J, YU K F, WANG X F et al. Nitrogen self-doped porous carbon based on sunflower seed hulls as excellent double anodes for potassium/sodium ion batteries[J]. Diam. Relat. Mater., 131: 109593(2023).

    [44] LI S Q, WANG K, ZHANG G F et al. Fast charging anode materials for lithium-ion batteries: current status and perspectives[J]. Adv. Funct. Mater., 32: 2200796(2022).

    [45] GONG H X, CHEN Y L, CHEN S C et al. Fast-charging of hybrid lithium-ion/lithium-metal anodes by nanostructured hard carbon host[J]. ACS Energy Lett., 7: 4417(2022).

    [46] QIU D, KANG C, LI M et al. Biomass-derived mesopore- dominant hierarchical porous carbon enabling ultra-efficient lithium ion storage[J]. Carbon, 162: 595(2020).

    [47] LIU C, XIAO N, WANG Y W et al. Carbon clusters decorated hard carbon nanofibers as high-rate anode material for lithium-ion batteries[J]. Fuel Process Technol., 180: 173(2018).

    [48] FU R S, CHANG Z Z, SHEN C X et al. Surface oxo-functionalized hard carbon spheres enabled superior high-rate capability and long-cycle stability for Li-ion storage[J]. Electrochim. Acta, 260: 430(2018).

    [49] HUANG S F, LI Z P, WANG B et al. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage[J]. Adv. Funct. Mater., 28: 1706294(2018).

    [50] ZHANG H L, LI F, LIU C et al. Poly(vinyl chloride) (PVC) coated idea revisited: influence of carbonization procedures on PVC-coated natural graphite as anode materials for lithium ion batteries[J]. J. Phys. Chem. C, 112: 7767(2008).

    [51] LIN J H, CHEN C Y. Thickness-controllable coating on graphite surface as anode materials using glucose-based suspending solutions for lithium-ion battery[J]. Surf. Coat. Technol., 436: 128270(2022).

    [52] LIN J H, KO T H, KUO W S et al. Mesophase pitch carbon coated with phenolic resin for the anode of lithium-ion batteries[J]. Energy Fuels, 24: 4090(2010).

    [53] LUO W, WANG Y X, CHOU S L et al. Critical thickness of phenolic resin-based carbon interfacial layer for improving long cycling stability of silicon nanoparticle anodes[J]. Nano Energy, 27: 255(2016).

    [54] KIM S Y, LEE J, KIM B H et al. Facile synthesis of carbon-coated silicon/graphite spherical composites for high- performance lithium-ion batteries[J]. ACS Appl. Mater. Interf., 8: 12109(2016).

    [58] CHEN C, WU M Q, XU Z Q et al. Tailored N-doped porous carbon nanocomposites through MOF self-assembling for Li/Na batteries[J]. J. Colloid Interf. Sci., 538: 267(2019).

    [59] PEI Z, MENG Q, WEI L et al. Toward efficient and high rate sodium-ion storage: a new insight from dopant-defect interplay in textured carbon anode materials[J]. Energy Storage Mater., 28: 55(2020).

    [62] SUN X Z, WANG C L, GONG Y et al. A flexible sulfur-enriched nitrogen doped multichannel hollow carbon nanofibers film for high performance sodium storage[J]. Small, 14: 1802218(2018).

    [63] ZHAO P Y, TANG J J, WANG C Y et al. A low-cost attempt to improve electrochemical performances of pitch-based hard carbon anodes in lithium-ion batteries by oxidative stabilization[J]. J. Solid State Electrochem., 21: 555(2017).

    [64] DAHER N, HUO D, DAVOISNE C et al. Impact of preoxidation treatments on performances of pitch-based hard carbons for sodium-ion batteries[J]. ACS Appl. Energy Mater., 3: 6501(2020).

    [65] DU Y F, SUN G H, LI Y et al. Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity[J]. Carbon, 178: 243(2021).

    [66] LI Q, LIU X S, TAO Y et al. Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries[J]. Nat. Sci. Rev., 9: nwac084(2022).

    [67] LU H, CHEN X, JIA Y et al. Engineering Al2O3 atomic layer deposition: enhanced hard carbon-electrolyte interface towards practical sodium ion batteries[J]. Nano Energy, 64: 103903(2019).

    [68] TAO H C, DU S L, ZHANG F et al. Achieving a high-performance carbon anode through the P-O bond for lithium-ion batteries[J]. ACS Appl. Mater. Interf., 10: 34245(2018).

    [69] GUO B K, SHU J, TANG K et al. Nano-Sn/hard carbon composite anode material with high-initial Coulombic efficiency[J]. J. Power Sources, 177: 205(2008).

    [70] MENG Q, LU Y, DING F et al. Tuning the closed pore structure of hard carbons with the highest Na storage capacity[J]. ACS Energy Lett., 4: 2608(2019).

    [71] WANG J C, ZHAO J H, HE X X et al. Hard carbon derived from hazelnut shell with facile HCl treatment as high-initial-Coulombic-efficiency anode for sodium ion batteries[J]. Sus. Mater. Technol., 33: e00446(2022).

    [72] HAN Y J, CHUNG D B, NAKABAYASHI K et al. Effect of heat pre-treatment conditions on the electrochemical properties of mangrove wood-derived hard carbon as an effective anode material for lithium-ion batteries[J]. Electrochim. Acta, 213: 432(2016).

    Tools

    Get Citation

    Copy Citation Text

    Mengfei HU, Liping HUANG, He LI, Guojun ZHANG, Houzheng WU. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries[J]. Journal of Inorganic Materials, 2024, 39(1): 32

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 10, 2023

    Accepted: --

    Published Online: Mar. 28, 2024

    The Author Email: Guojun ZHANG (gjzhang@dhu.edu.cn), Houzheng WU (wuhz@sinosteelamc.com)

    DOI:10.15541/jim20230365

    Topics