Chinese Journal of Lasers, Volume. 39, Issue s2, 205002(2012)
Numerical Study of Supercontinuum Generation in Photonic Crystal Fibers with Two Zero Dispersion Wavelengths
[1] [1] G. P. Agrawal. Nonlinear Fiber Optics (4th edition)[M]. Singapore: Elsevier, 2007
[2] [2] J. C. Knight. Photonic crystal fibres[J]. Nature, 2003, 424(6950): 847~851
[3] [3] S. Coen, A. H. L. Chau, R. Leonhardt et al.. White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber[J]. Opt. Lett., 2001, 26(17): 1356~1358
[4] [4] W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight et al.. Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source[J]. J. Opt. Soc. Am. B, 2002, 19(9): 2148~2155
[5] [5] G. Genty, M. Lehtonen, H. Ludvigsen. Enhanced bandwidth of supercontinuum generated in microstructured fibers[J]. Opt. Express, 2004, 12(15): 3471~3480
[6] [6] M. L. V. Tse, P. Horak, F. Poletti et al.. Supercontinuum generation at 1.06 μm in holey fibers with dispersion flattened profiles[J]. Opt. Express, 2006, 14(10): 4445~4451
[7] [7] J. H. Lin, K. H. Lin, C. C. Hsu et al.. Supercontinuum generation in a microstructured optical fiber by picosecond self Q-switched mode-locked NdGdVO4 laser[J]. Laser Phys. Lett., 2007, 4(6): 413~417
[8] [8] M. Delgado-Pinar, P. J. Mosley, J. C. Knight et al.. Visible supercontinuum generation in the femtosecond regime in submicron structures[C]. OSA1NP2010, 2010
[9] [9] D. Ghosh, S. Roy, M. Pal et al.. Blue-extended sub-nanosecond supercontinuum generation in simply designed nonlinear microstructured optical fibers[J]. J. Lightwave Technol., 2011, 29(2): 146~152
[10] [10] Q. Jing, X. Zhang, H. Ma et al.. Flatly broadened supercontinuum generation in dispersion-flattened photonic crystal fibre[J]. J. Opt., 2012, 14(1): 015203
[14] [14] A. Efimov, A. V. Yulin, D. V. Skryabin et al.. Interaction of an optical soliton with a dispersive wave[J]. Phys. Rev. Lett., 2005, 95(21): 213902
[15] [15] A. Efimov, A. Taylor, F. Omenetto et al.. Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: experiment and modelling[J]. Opt. Express, 2004, 12(26): 6498~6507
[16] [16] J. P. Gordon. Theory of the soliton self-frequency shift[J]. Opt. Lett., 1986, 11(10): 662~664
[17] [17] S. P. Stark, A. Podlipensky, N. Y. Joly et al.. Ultraviolet-enhanced supercontinuum generation in tapered photonic crystal fiber[J]. J. Opt. Soc. Am. B, 2010, 27(3): 592~598
[18] [18] K. Hilligse, T. V. Andersen, H. N. Paulsen et al.. Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths[J]. Opt. Express, 2004, 12(6): 1045~1054
[19] [19] A. Podlipensky, P. Szarniak, N. Y. Joly et al.. Bound soliton pairs in photonic crystal fiber[J]. Opt. Express, 2007, 15(4): 1653~1662
[20] [20] S. Pricking, H. Giessen. Tailoring the soliton and supercontinuum dynamics by engineering the profile of tapered fibers[J]. Opt. Express, 2010, 18(19): 20151~20163
[21] [21] H. G. Choi, C. S. Kee, H. Y. Park et al.. Numerical analysis of supercontinuum generation in highly nonlinear photonic crystal fibers with ultrashort pulses[J]. J. Opt. A: Pure and Applied Optics, 2009, 11(12): 125101
Get Citation
Copy Citation Text
Chen Haihuan, Chen Zilun, Zhou Xuanfeng, Hou Jing. Numerical Study of Supercontinuum Generation in Photonic Crystal Fibers with Two Zero Dispersion Wavelengths[J]. Chinese Journal of Lasers, 2012, 39(s2): 205002
Category: Optical communication
Received: May. 16, 2012
Accepted: --
Published Online: Dec. 24, 2012
The Author Email: Haihuan Chen (chenhaihuan2010@sina.com)