Acta Optica Sinica, Volume. 41, Issue 13, 1306005(2021)
Surface-Mode Resonance Coupling Effect and High-Temperature Sensing Characteristics in Hollow-Core Photonic Bandgap Fibers
[2] Yang F, Gyger F, Thévenaz L. Intense Brillouin amplification in gas using hollow-core waveguides[J]. Nature Photonics, 14, 700-708(2020).
[4] Poletti F, Petrovich M N, Richardson D J. Hollow-core photonic bandgap fibers: technology and applications[J]. Nanophotonics, 2, 315-340(2013).
[5] Poletti F. Broderick N G R, Richardson D J, et al. The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers[J]. Optics Express, 13, 9115-9124(2005).
[6] Amezcua-Correa R. Broderick N G R, Petrovich M N, et al. Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers[J]. Optics Express, 14, 7974-7985(2006).
[9] Digonnet M, Blin S, Kim H K et al. Sensitivity and stability of an air-core fibre-optic gyroscope[J]. Measurement Science and Technology, 18, 3089-3097(2007).
[11] Wang Y P, Jin W, Ju J et al. Long period gratings in air-core photonic bandgap fibers[J]. Optics Express, 16, 2784-2790(2008).
[12] Tan Z, Liao C R, Liu S et al. Simultaneous measurement sensors of temperature and strain based on hollow core fiber and fiber Bragg grating[J]. Acta Optica Sinica, 38, 1206007(2018).
[13] Jin W, Cao Y, Yang F et al. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range[J]. Nature Communications, 6, 6767(2015).
[14] Yang F, Jin W, Lin Y C et al. Hollow-core microstructured optical fiber gas sensors[J]. Journal of Lightwave Technology, 35, 3413-3424(2017).
[15] Ermatov T, Noskov R E, Machnev A A et al. Multispectral sensing of biological liquids with hollow-core microstructured optical fibres[J]. Light: Science & Applications, 9, 173(2020).
[16] Munzke D, Böhm M, Reich O. Gaseous oxygen detection using hollow-core fiber-based linear cavity ring-down spectroscopy[J]. Journal of Lightwave Technology, 33, 2524-2529(2015).
[18] Cubillas A M, Silva-Lopez M, Lazaro J M et al. Methane detection at 1670-nm band using a hollow-core photonic bandgap fiber and a multiline algorithm[J]. Optics Express, 15, 17570-17576(2007).
[21] Song J M, Sun K, Xu X B. Scattering loss analysis and structure optimization of hollow-core photonic bandgap fibers[J]. Chinese Journal of Lasers, 42, 1105003(2015).
[22] Yang Y J, Homma O, Urata S et al. Topological pruning enables ultra-low Rayleigh scattering in pressure-quenched silica glass[J]. Npj Computational Materials, 6, 139(2020).
[24] White T P, Kuhlmey B T. McPhedran R C, et al. Multipole method for microstructured optical fibers I formulation[J]. Journal of the Optical Society of America B, 19, 2322-2330(2002).
[27] Liu Y G, Liu B, Feng X H et al. High-birefringence fiber loop mirrors and their applications as sensors[J]. Applied Optics, 44, 2382-2390(2005).
Get Citation
Copy Citation Text
Yong You, Huiyi Guo, wei Li, Yili Ke, Shaoxiang Duan, Zhi Wang, Yange Liu. Surface-Mode Resonance Coupling Effect and High-Temperature Sensing Characteristics in Hollow-Core Photonic Bandgap Fibers[J]. Acta Optica Sinica, 2021, 41(13): 1306005
Category: Fiber Optics and Optical Communications
Received: Feb. 7, 2021
Accepted: Mar. 18, 2021
Published Online: Jul. 11, 2021
The Author Email: Liu Yange (ygliu@nankai.edu.cn)