Acta Optica Sinica, Volume. 27, Issue 4, 638(2007)
Target Detection for Remote Sensing Image Based on Gaussian Transformation of Background
[1] [1] Phil Clare, Mak Bernhardt, William Oxford et al.. A new approach to anomaly detection in hyperspectral images[C]. Proc. SPIE, 2003, 5093: 17~28
[2] [2] D. Manolakis, D. Marden, J. Kerekes et al.. On the statistics of hyperspectral imaging data[C]. Proc. SPIE, 2001, 4381: 308~316
[3] [3] B. A. Bastami, H. Amindavar. A new method for detectability of signals in K-distributed clutter[J]. IEEE, Signal Processing and Its Applications, 2003, 1(1~4): 345~348
[4] [4] M. Bernhardt, W. J. Oxford, P. E. Clare et al.. Statistical detection algorithms in fat-tailed hyperspectral background clutter[C]. Proc. SPIE, 2004, 5573: 215~225
[9] [9] P. B. Chapple, D. C. Bertilone, R. S. Caprari et al.. Stochastic model-based processing for detection of small targets in non-Gaussian natural imagery[J]. IEEE Transactions on Image Processing, 2001, 10(4): 554~564
[10] [10] G. Rellier, X. Descombes, F. Falzon et al.. Texture feature analysis using a Gauss-Markov model in hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7): 1543~1551
[11] [11] T. N. Tran, R. Wehrens, D. H. Hoekman et al.. Initialization of Markov random field clustering of large remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1912~1919
[12] [12] A. H. S. Solberg, T. Taxt, A. K. Jain. A Markov random field model for classification of multisource satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(1): 100~113
[13] [13] S. Geman, D. Geman. Stochastic relaxation, Gibbs distribution, and bayesian restoration of images[J]. IEEE Transactions Pattern Analysis Machine. Intelligence, 1984, 6(6): 721~ 741
[14] [14] D. W. J. Stein, S. G. Beaven, L. E. Hoff et al.. Anomaly detection from hyperspectral imageryp[J]. IEEE Signal Process. Mag., 2002, 19(1): 58~69
[15] [15] Heesung Kwon, Nasser M. Nasrabadi. Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery[J]. IEEE Transactions Geosci. Remote Sensing, 2005, 43(2): 388~397
Get Citation
Copy Citation Text
[in Chinese], [in Chinese], [in Chinese]. Target Detection for Remote Sensing Image Based on Gaussian Transformation of Background[J]. Acta Optica Sinica, 2007, 27(4): 638