Journal of Synthetic Crystals, Volume. 54, Issue 5, 737(2025)

Research Progress of Wide Band Gap Semiconductor Silicon Carbide Based Nuclear Radiation Detector

Qingbo DU, Yapeng YANG, Xudong GAO, Zhi ZHANG, Xiaoyu ZHAO, Huiqi WANG, Yier LIU, and Guoqiang LI*
Figures & Tables(21)
SiC detector schematic diagram and three effects competition diagram. (a) Schematic diagram of SiC detector principle[14]; (b) schematic diagram of three main effect advantages[16]
Schematic diagram of tetrahedral bonding structure of SiC[21]
Schematic diagram of three different SiC structures[23]
Band structure of 4H-SiC [26]
Main preparation method of SiC single crystal substrate. (a)Top seed solution growth method[39]; (b)high temperature chemical vapor deposition[41]; (c)physical vapor transfer method[45]
Real picture of SiC single crystal substrate grown by solution method. (a) 3 inch 4H-SiC by Sumitomo[47]; (b) 3.75 inch 4H-SiC by Sumitomo[48]; (c) 2 inch 4H-SiC by Toyota[49]; (d) 4 inch 4H-SiC by Toyota[50]; (e) 4 inch 4H-SiC grown at Institute of Physics CAS[54]
Schematic diagram of common epitaxial growth methods for SiC[55]
Optical images of SiC epitaxial film[60]. (a) Without HCl gas introduced; (b) introducing HCl gas
Study on heavy ion detection by SiC detector[75]. (a) Section of 4H-SiC Schottky detector; (b) current-voltage characteristic diagram of Schottky 4H-SiC detector prepared; (c) detection spectra of 132Xe23+ with different energies by 4H-SiC detector with epitaxial layer thickness of 25 µm; (d) detection spectra of 132Xe23+ with different energies by a 4H-SiC detector with epitaxial layer thickness of 50 µm; (e) energy dependence diagram of detector PHD and Xe ion; (f) Xe ion peak and energy dependence diagram
Study on α particle detection by 50 µm epitaxial layer SiC detector[76]. (a) Detector structure diagram; (b) schematic diagram of the device for detecting α particle spectrum by SiC detector; (c) drawings of actual experimental installations; (d) reverse current-voltage characteristics of 4H-SiC detector at different temperatures up to 500 ℃
Research on fast neutron detection by SiC detector. (a) Structure diagram of self-biased SiC based neutron detector[81]; (b) comparison between simulation results and measured results at some characteristic peaks[84]
Research on various types of SiC neutron detectors. (a) PHD diagram of thermal neutron fluence of LiF type silicon carbide detector[87]; (b) PHD diagram of thermal neutron fluence of air-type silicon carbide detector[87]; (c) physical picture of PIN-type SiC detector[89]; (d) diagram of the detector's time response test results[89]
Detection of thermal neutrons and fast neutrons by SiC nuclear radiation detector[91]. (a) Response diagram of the detector covered with LiF to thermal neutrons; (b) change of counting rate of LiF coated detector with beam current; (c) diagram of experimental apparatus for fast neutron detection; (d) neutron detection results of SiC detector without transition layer
X-ray SiC nuclear radiation detector. (a) Schottky SiC detector structure diagram[93]; (b) SiC array detector diagram[93]; (c) X-ray spectra of 241Am source detected by SiC array detector[93]; (d) 241Am X-ray spectra detected by high-resolution X-ray SiC detector at 27 and 100 °C[31]
Feasibility study of commercial power SiC Schottky diode as silicon carbide γ-radiation detector[97]. (a) Structure diagram of SiC Schottky diode; (b) relationship between leakage current and reverse bias of two different power Schottky SiC diodes; (c) waveform diagram of the radiation-induced current response of diode 1 at different gamma dose rates at a reverse bias voltage of 10 V; (d) waveform diagram of the radiation-induced current response waveform of diode 1 at different gamma dose rates at a reverse bias of 200 V; (e) waveform diagram of the radiation-induced current response of diode 2 at different gamma dose rates at a reverse bias of 10 V; (f) waveform diagram of the radiation-induced current response of diode 2 at different gamma dose rates at a reverse bias of 200 V; (g) curve of radiation induced current with dose rate of two Schottky SiC diodes at each reverse bias voltage; (h) transition diagram of diode 1 from leakage current to radiation induced current when the dose rate is 0.258 Gy/h; (i) transition diagram of diode 1 from leakage current to radiation induced current when the dose rate of 26.312 Gy/h
SiC nuclear radiation detection system for detecting gamma dose rate of strong radiation field[98]. (a) Unpackaged SiC-based gamma-ray detector; (b) detector drawings for packaged and welded SMA connectors; (c) structure diagram of silicon carbide nuclear radiation detection system; (d) output signal diagram of preamplifier when silicon carbide γ detector detects 137Cs; (e) silicon carbide gamma detector test layout diagram; (f) conversion curves of detector count rate and gamma dose rate; (g) irradiation experiment layout diagram of silicon carbide γ detector in n/γ mixed radiation field; (h) fitting curve of the relationship between the total number of silicon carbide γ detector before and after irradiation and the accelerator pulse frequency
  • Table 1. Influences of different defects on the performance of silicon carbide detector

    View table
    View in Article

    Table 1. Influences of different defects on the performance of silicon carbide detector

    缺陷类型影响
    基面位错导致载流子寿命局部降低,增加探测器漏电流
    螺型位错与微管导致雪崩前反向偏置点提前失效,降低击穿电压
    表面宏观缺陷增大漏电流,明显降低击穿电压
    堆垛层错导致电荷积累,产生静电势,增加正向电压降
  • Table 2. Properties of 4H-SiC and other semiconductor materials

    View table
    View in Article

    Table 2. Properties of 4H-SiC and other semiconductor materials

    性能SiGe6H-SiCGaAsGaN4H-SiC金刚石
    禁带宽度/eV1.120.663.01.433.43.265.5
    击穿电场强度/(MV·cm-10.50.12.40.60.41310
    介电常数11.816.21012.99.69.665.5
    电子迁移率/(cm2·V-1·s-11 4503 900370≤8 5001 0001 0202 200
    空穴迁移率/(cm2·V-1·s-14501 90050≤400301151 600
    密度/(g·cm-32.335.33.25.376.23.223.51
    热导率/(W·cm-1·K-11.480.63.60.541.5520
  • Table 3. Comparison of characteristics of different types of nuclear radiation detectors

    View table
    View in Article

    Table 3. Comparison of characteristics of different types of nuclear radiation detectors

    探测器类型工作温度辐照损伤特性能量分辨率制作工艺
    SiC基室温可使用,能在反应堆级别温度下使用,理论极限工作高温可达1 240 ℃在大剂量α/β/γ射线、等效1 MeV中子注量低于5×1013 cm-2或8 MeV质子注量低于3×1014 cm-2辐照条件下探测器几乎都无辐照损伤平均电离能7.78 eV,探测α粒子最优为0.25%,优于气体探测器和闪烁体探测器能生产出高质量、大尺寸(6英寸和8英寸)的晶体,器件制作工艺在宽禁带半导体中较为成熟
    Si基需要使用液氮冷却或电制冷在-20 ℃低温下才能稳定工作原子离位阈能13~20 eV,性能随辐照强度增加急剧下降,中子注量达1013 cm-2量级严重退化35,辐照损伤严重平均电离能3.6 eV,在沉积相同能下,能量分辨率优于SiC基晶体生长与器件制作工艺成熟
    Ge基室温不能使用,需要在低温下才能稳定工作原子离位阈能16~20 eV,耐辐照能力与Si基相似,强辐照场下性能急剧下降平均电离能2.95 eV,能量分辨率最高,优于Si基具有成熟的晶体生长与器件制作工艺
    GaAs基室温下能使用,可在高温达120 ℃下工作20 MeV电子剂量低于0.5MGy或1MeV中子注量低于1.3×1014 cm-2辐照后可使用36平均电离能4.8 eV,能量分辨率优于SiC基晶体质量优异且技术成熟,相对第三代半导体成本低
    金刚石室温可工作,工作高温可达650 ℃以上37在1015 质子/cm2、250 Mrad光子或3×1015 中子/cm2辐照条件下几乎都无辐照损伤38平均电离能13.6 eV,能量分辨率比SiC基差难以生长出高质量、大尺寸金刚石晶体,器件制作难
  • Table 4. Advantages and disadvantages of several common SiC epitaxial growth methods

    View table
    View in Article

    Table 4. Advantages and disadvantages of several common SiC epitaxial growth methods

    外延生长方法优点缺点
    CVD能精确控制外延厚度和掺杂浓度,生长速率合适,表面形貌好需要高纯的生长源,难以控制外延层中的缺陷密度
    MBE生长温度低,高精度厚度,能生长不同SiC晶型,利于超精细结构生长成本高,生长速率低,不适于功率器件外延的制备
    LPE成本低,高生长速率,低缺陷密度,高缺陷闭合效率难控制掺杂浓度,表面形貌粗糙,要准确控制热平衡条件
  • Table 5. Summary of thermal neutron response and damage characteristics of several different detectors<sup>[<a class="aTag" href="#Ref_88" target="_self" style="display: inline;">88</a>]</sup>

    View table
    View in Article

    Table 5. Summary of thermal neutron response and damage characteristics of several different detectors<sup>[<a class="aTag" href="#Ref_88" target="_self" style="display: inline;">88</a>]</sup>

    DetectorTNRL-shiftΔR
    Si-LiF3×10-2Yes-5%×1012 cm2
    SiC-LiF3×10-2YesNo
    SiC-air3.5×10-8Very littleNo
Tools

Get Citation

Copy Citation Text

Qingbo DU, Yapeng YANG, Xudong GAO, Zhi ZHANG, Xiaoyu ZHAO, Huiqi WANG, Yier LIU, Guoqiang LI. Research Progress of Wide Band Gap Semiconductor Silicon Carbide Based Nuclear Radiation Detector[J]. Journal of Synthetic Crystals, 2025, 54(5): 737

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Dec. 9, 2024

Accepted: --

Published Online: Jul. 2, 2025

The Author Email: Guoqiang LI (liguoqiang@crip.org.cn)

DOI:10.16553/j.cnki.issn1000-985x.2024.0309

Topics